全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cytokine and Chemokine Profile in Individuals with Different Degrees of Periportal Fibrosis due to Schistosoma mansoni Infection

DOI: 10.1155/2012/394981

Full-Text   Cite this paper   Add to My Lib

Abstract:

Periportal fibrosis in schistosomiasis has been associated to the host immune response to parasite antigens. We evaluated the immune response in S. mansoni infected individuals with different degrees of periportal fibrosis. Cytokine and chemokines were measured in serum and in supernatants of PBMC cultures stimulated with the soluble adult worm (SWAP) or egg (SEA) antigens, using a sandwich ELISA. The levels of IL-5 in response to SEA were higher in individuals with moderate to severe fibrosis (310.9?pg/mL) compared to individuals without fibrosis (36.8?pg/mL; ). There was also a higher production of TNF-α in cultures stimulated with SWAP in patients with insipient fibrosis (1446?pg/mL) compared to those without fibrosis (756.1?pg/mL; ). The serum levels of IL-13 and MIP-1α were higher in subjects without fibrosis than in those with moderate to severe fibrosis. However a positive association between serum levels of IL-13, TNF-α, MIP-1α, and RANTES and S. mansoni parasite burden was found. From these data we conclude that IL-5 and TNF-α may participate in liver pathology in schistosomiasis. The positive association between IL-13, TNF-α, MIP-1α, and RANTES with parasite burden, however, might predict the development of liver pathology. 1. Introduction Schistosomiasis is a chronic parasitic infection that affects 200 million people in Africa, South America, and Asia and it is estimated that roughly 700 million people in the world live at risk of infection [1, 2]. In Brazil, the only species described is Schistosoma mansoni, and it is estimated that seven million people are infected by the parasite and about 25 million are at risk of infection [3]. The liver pathology results from the host immune response to parasite antigens from the eggs that become trapped in the portal venous system, and it is associated to the morbidity and mortality described in schistosomiasis [4]. The granuloma formation around S. mansoni eggs is complex and represents an interaction between products secreted by the miracidia, which are released from the egg and the host immune response [5]. Consequently, the granulomas formed act as barriers that prevent the dispersion of egg antigens of S. mansoni, and the consequent damage to the liver parenchyma. However, when caused by deposition of large numbers of eggs, the inflammatory process may progress to severe fibrosis, which leads to interruption of normal blood flow in the venous system to the sinusoids resulting in portal hypertension, hepatosplenomegaly, and formation of gastric and esophageal varices that can lead to bleeding and

References

[1]  L. S. Iarotski and A. Davis, “The schistosomiasis problem in the world: results of a WHO questionnaire survey,” Bulletin of the World Health Organization, vol. 59, no. 1, pp. 115–127, 1981.
[2]  Ministério da Saúde, Guia De Vigilancia Epidemiológica, Ministério da Saúde, Brasília, Brasil, 2005.
[3]  M. S. Wilson, M. M. Mentink-Kane, J. T. Pesce, T. R. Ramalingam, R. Thompson, and T. A. Wynn, “Immunopathology of schistosomiasis,” Immunology and Cell Biology, vol. 85, no. 2, pp. 148–154, 2007.
[4]  Z. A. Andrade, “Schistosomiasis and liver fibrosis: review Article,” Parasite Immunology, vol. 31, no. 11, pp. 656–663, 2009.
[5]  J. C. Bina, “Estudo de variáveis que podem influenciar na evolu??o da esquistossomose mans?nica: efeito da terapêutica específica e da interrup??o da transmissào,” Revista de Patologia Tropical, vol. 26, pp. 69–128, 1997.
[6]  J. C. Bina and A. Prata, “Schistosomiasis in hyperendemic area of Taquarendi. I- Schistosoma mansoni infection and severe clinikal forms,” Revista da Sociedade Brasileira de Medicina Tropical, vol. 36, no. 2, pp. 211–216, 2003.
[7]  S. Henri, C. Chevillard, A. Mergani et al., “Cytokine regulation of periportal fibrosis in humans infected with Schistosoma mansoni: IFN-γ is associated with protection against fibrosis and TNF-α with aggravation of disease,” Journal of Immunology, vol. 169, no. 2, pp. 929–936, 2002.
[8]  P. L. Falc?o, L. C. C. Malaquias, O. A. Martins-Filho et al., “Human Schistosomiasis mansoni: IL-10 modulates the in vitro granuloma formation,” Parasite Immunology, vol. 20, no. 10, pp. 447–454, 1998.
[9]  S. Gustavson, C. S. Zouain, J. B. Alves, M. F. Leite, and A. M. Goes, “Modulation of granulomatous hypersensitivity against Schistosoma mansoni eggs in mice vaccinated with culture-derived macrophages loaded with PIII,” Parasitology International, vol. 51, no. 3, pp. 259–269, 2002.
[10]  T. A. Wynn, “Cytokine regulation of granuloma formation in schistosomiasis,” Current Opinion in Immunology, vol. 7, no. 4, pp. 505–511, 1995.
[11]  L. Steinman, “A brief history of TH17, the first major revision in the T H1/TH2 hypothesis of T cell-mediated tissue damage,” Nature Medicine, vol. 13, no. 2, pp. 139–145, 2007.
[12]  L. I. Rutitzky, L. Bazzone, M. G. Shainheit, B. Joyce-Shaikh, D. J. Cua, and M. J. Stadecker, “IL-23 is required for the development of severe egg-induced immunopathology in schistosomiasis and for lesional expression of IL-17,” Journal of Immunology, vol. 180, no. 4, pp. 2486–2495, 2008.
[13]  L. I. Rutitzky, J. R. L. Da Rosa, and M. J. Stadecker, “Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high levels of IL-17,” Journal of Immunology, vol. 175, no. 6, pp. 3920–3926, 2005.
[14]  L. I. Rutitzky and M. J. Stadecker, “CD4 T cells producing pro-inflammatory interleukin-17 mediate high pathology in schistosomiasis,” Memorias do Instituto Oswaldo Cruz, vol. 101, no. 1, pp. 327–330, 2006.
[15]  N. Katz, P. M. Coelho, and J. Pellegrino, “Evaluation of Kato's quantitative method through the recovery of Schistosoma mansoni eggs added to human feces,” Journal of Parasitology, vol. 56, no. 5, pp. 1032–1033, 1970.
[16]  M. I. A. S. Araujo, B. Hoppe, M. Medeiros et al., “Impaired T helper 2 response to aeroallergen in helminth-infected patiente with asthma,” Journal of Infectious Diseases, vol. 190, no. 10, pp. 1797–1803, 2004.
[17]  A. J. Dessein, M. Begley, C. Demeure et al., “Human resistance to Schistosoma mansoni is associated with IgG reactivity to a 37-kDa larval surface antigen,” Journal of Immunology, vol. 140, no. 8, pp. 2727–2736, 1988.
[18]  A. V. Grant, M. I. Araujo, E. V. Ponte et al., “High heritability but uncertain mode of inheritance for total serum IgE level and Schistosoma mansoni infection intensity in a schistosomiasis-endemic Brazilian population,” Journal of Infectious Diseases, vol. 198, no. 8, pp. 1227–1236, 2008.
[19]  M. F. Abdel-Wahab, G. Esmat, A. Farrag, Y. A. El-Boraey, and G. T. Strickland, “Grading of hepatic schistosomiasis by the use of ultrasonography,” American Journal of Tropical Medicine and Hygiene, vol. 46, no. 4, pp. 403–408, 1992.
[20]  A. R. De Jesus, A. Silva, L. B. Santana et al., “Clinical and immunologic evaluation of 31 patients with acute schistosomiasis mansoni,” Journal of Infectious Diseases, vol. 185, no. 1, pp. 98–105, 2002.
[21]  A. R. De Jesus, D. G. Miranda, R. G. Miranda et al., “Morbidity associated with Schistosoma mansoni infection determined by ultrasound in an endemic area of Brazil, Caatinga do Moura,” American Journal of Tropical Medicine and Hygiene, vol. 63, no. 1-2, pp. 1–4, 2000.
[22]  L. F. A. Oliveira, E. C. Moreno, G. Gazzinelli et al., “Cytokine production associated with periportal fibrosis during chronic schistosomiasis mansoni in humans,” Infection and Immunity, vol. 74, no. 2, pp. 1215–1221, 2006.
[23]  E. J. Pearce, S. L. James, and J. Dalton, “Immunochemical characterization and purification of Sm-97, a Schistosoma mansoni antigen monospecifically recognized by antibodies from mice protectively immunized with a nonliving vaccine,” Journal of Immunology, vol. 137, no. 11, pp. 3593–3600, 1986.
[24]  C. Hirsch and A. M. Goes, “Characterization of fractionated Schistosoma mansoni soluble adult worm antigens that elicit human cell proliferation and granuloma formation in vitro,” Parasitology, vol. 112, no. 6, pp. 529–535, 1996.
[25]  M. Booth, J. K. Mwatha, S. Joseph et al., “Periportal Fibrosis in Human Schistosoma mansoni Infection Is Associated with Low IL-10, Low IFN-γ, High TNF-α, or Low RANTES, Depending on Age and Gender,” Journal of Immunology, vol. 172, no. 2, pp. 1295–1303, 2004.
[26]  Q. Mohamed-Ali, N. E. M. A. Elwali, A. A. Abdelhameed et al., “Susceptibility to periportal (Symmers) fibrosis in human Schistosoma mansoni infections: evidence that intensity and duration of infection, gender, and inherited factors are critical in disease progression,” Journal of Infectious Diseases, vol. 180, no. 4, pp. 1298–1306, 1999.
[27]  M. F. Abdel-Wahab, G. Esmat, S. I. Narooz, A. Yosery, J. P. Struewing, and G. T. Strickland, “Sonographic studies of schoolchildren in a village endemic for Schistosoma mansoni,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 84, no. 1, pp. 69–73, 1990.
[28]  E. Doehring-Schwerdtfeger, I. M. Abdel-Rahim, Q. Mohamed-Ali et al., “Ultrasonographical investigation of peripheral fibrosis in children with Schistosoma mansoni infection: evaluation of morbidity,” American Journal of Tropical Medicine and Hygiene, vol. 42, no. 6, pp. 581–586, 1990.
[29]  A. L. C. Domingues, A. R. F. Lima, H. S. Dias, G. C. Leao, and A. Coutinho, “An ultrasonographic study of liver fibrosis in patients infected with Schistosoma mansoni in north-east Brazil,” Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 87, no. 5, pp. 555–558, 1993.
[30]  M. Homeida, A. F. Abdel-Gadir, A. W. Cheever et al., “Diagnosis of pathologically confirmed Symmers' periportal fibrosis by ultrasonography: a prospective blinded study,” American Journal of Tropical Medicine and Hygiene, vol. 38, no. 1, pp. 86–91, 1988.
[31]  A. J. Dessein, D. Hillaire, N. E. M. A. Elwali et al., “Severe hepatic fibrosis in Schistosoma mansoni infection is controlled by a major locus that is closely linked to the interferon-γ receptor gene,” American Journal of Human Genetics, vol. 65, no. 3, pp. 709–721, 1999.
[32]  O. S. Carvalho, P. M. Z. Coelho, and H. L. Lenzi, Schistosoma mansoni e Esquistossomose: Uma Vis?o Multidisciplinar, Editora Fiocruz, Rio de Janeiro, Brazil, 1st edition, 2008.
[33]  M. G. Chiaramonte, A. W. Cheever, J. D. Malley, D. D. Donaldson, and T. A. Wynn, “Studies of murine schistosomiasis reveal interleukin-13 blockade as a treatment for established and progressive liver fibrosis,” Hepatology, vol. 34, no. 2, pp. 273–282, 2001.
[34]  M. G. Chiaramonte, D. D. Donaldson, A. W. Cheever, and T. A. Wynn, “An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response,” Journal of Clinical Investigation, vol. 104, no. 6, pp. 777–785, 1999.
[35]  A. R. De Jesus, I. Araújo, O. Bacellar et al., “Human immune responses to Schistosoma mansoni vaccine candidate antigens,” Infection and Immunity, vol. 68, no. 5, pp. 2797–2803, 2000.
[36]  A. R. De Jesus, A. Magalh?es, D. G. Miranda et al., “Association of type 2 cytokines with hepatic fibrosis in human Schistosoma mansoni infection,” Infection and Immunity, vol. 72, no. 6, pp. 3391–3397, 2004.
[37]  A. Magalh?es, D. G. Miranda, R. G. Miranda et al., “Cytokine profile associated with human chronic schistosomiasis mansoni,” Memorias do Instituto Oswaldo Cruz, vol. 99, no. 5, supplement 1, pp. 21–26, 2004.
[38]  R. M. Reiman, R. W. Thompson, C. G. Feng et al., “Interleukin-5 (IL-5) augments the progression of liver fibrosis by regulating IL-13 activity,” Infection and Immunity, vol. 74, no. 3, pp. 1471–1479, 2006.
[39]  D. N. Silva-Teixeira, C. Contigli, J. R. Lambertucci, J. C. Serufo, and V. Rodrigues, “Gender-related cytokine patterns in sera of schistosomiasis patients with symmers' fibrosis,” Clinical and Diagnostic Laboratory Immunology, vol. 11, no. 3, pp. 627–630, 2004.
[40]  C. N. L. De Morais, J. R. De Souza, W. G. De Melo et al., “Studies on the production and regulation of interleukin, IL-13, IL-4 and interferon-γ in human schistosomiasis mansoni,” Memorias do Instituto Oswaldo Cruz, vol. 97, supplement 1, pp. 113–114, 2002.
[41]  M. I. Araújo, A. R. De Jesus, O. Bacellar, E. Sabin, E. Pearce, and E. M. Carvalho, “Evidence of a T helper type 2 activation in human schistosomiasis,” European Journal of Immunology, vol. 26, no. 6, pp. 1399–1403, 1996.
[42]  H. Tallima, M. Salah, F. R. Guirguis, and R. El Ridi, “Transforming growth factor-β and Th17 responses in resistance to primary murine schistosomiasis mansoni,” Cytokine, vol. 48, no. 3, pp. 239–245, 2009.
[43]  L. C. Borish and J. W. Steinke, “2. Cytokines and chemokines,” Journal of Allergy and Clinical Immunology, vol. 111, no. 2, supplement, pp. S460–S475, 2003.
[44]  K. F. Hoffmann, P. Caspar, A. W. Cheever, and T. A. Wynn, “IFN-γ, IL-12, and TNF-α are required to maintain reduced liver pathology in mice vaccinated with Schistosoma mansoni eggs and IL-12,” Journal of Immunology, vol. 161, no. 8, pp. 4201–4210, 1998.
[45]  S. A. Shahat, M. A. El-Dhshan, S. S. Aissa, A. Dorra, and K. M. Metwally, “Flowcytometric analysis of T-lymphocytes and serum tumour necrosis factor alpha (TNF-alpha) levels in Schistosoma mansoni patients,” Journal of the Egyptian Society of Parasitology, vol. 37, no. 3, pp. 1065–1074, 2007.
[46]  M. O. Li, Y. Y. Wan, S. Sanjabi, A. K. L. Robertson, and R. A. Flavell, “Transforming growth factor-β regulation of immune responses,” Annual Review of Immunology, vol. 24, pp. 99–146, 2006.
[47]  J. Massague, J. Andres, L. Attisano et al., “TGF-β receptors,” Molecular Reproduction and Development, vol. 32, no. 2, pp. 99–104, 1992.
[48]  R. R. El-Gamal, S. M. Nada, N. E. Moustafa et al., “Relationship between serum cytokines profiles and hepatic fibrosis in schistosomiasis mansoni: an experimental study,” Journal of the Egyptian Society of Parasitology, vol. 39, no. 3, pp. 907–916, 2009.
[49]  M. L. Burke, M. K. Jones, G. N. Gobert, Y. S. Li, M. K. Ellis, and D. P. McManus, “Immunopathogenesis of human schistosomiasis,” Parasite Immunology, vol. 31, no. 4, pp. 163–176, 2009.
[50]  A. L. S. Souza, E. Roffê, V. Pinho et al., “Potential role of the chemokine macrophage inflammatory protein 1α in human and experimental schistosomiasis,” Infection and Immunity, vol. 73, no. 4, pp. 2515–2523, 2005.
[51]  P. R. S. Souza, A. L. S. Souza, D. Negr?o-Correa, A. L. Teixeira, and M. M. Teixeira, “The role of chemokines in controlling granulomatous inflammation in Schistosoma mansoni infection,” Acta Tropica, vol. 108, no. 2-3, pp. 135–138, 2008.
[52]  P. L. Falc?o, R. Correa-Oliveira, L. A. O. Fraga et al., “Plasma concentrations and role of macrophage inflammatory protein-1α during chronic Schistosoma mansoni infection in humans,” Journal of Infectious Diseases, vol. 186, no. 11, pp. 1696–1700, 2002.
[53]  D. M. Oliveira, D. N. Silva-Teixeira, S. Gustavson, S. M. P. Oliveira, and A. M. Goes, “Nitric oxide interaction with IL-10, MIP-1α, MCP-1 and RANTES over the in vitro granuloma formation against different Schistosoma mansoni antigenic preparations on human schistosomiasis,” Parasitology, vol. 120, no. 4, pp. 391–398, 2000.
[54]  N. Berkman, V. L. Krishnan, T. Gilbey et al., “Expression of RANTES mRNA and protein in airways of patients with mild asthma,” American Journal of Respiratory and Critical Care Medicine, vol. 154, no. 6, pp. 1804–1811, 1996.
[55]  M. John, S. J. Hirst, P. J. Jose et al., “Human Airway smooth muscle cells express and release RANTES in response to T helper 1 Cytokines: regulation by T helper 2 cytokines and corticosteroids,” Journal of Immunology, vol. 158, no. 4, pp. 1841–1847, 1997.
[56]  A. Marfaing-Koka, O. Devergne, G. Gorgone et al., “Regulation of the production of the RANTES chemokine by endothelial cells: synergistic induction by IFN-γ plus TNF-α and inhibition by IL-4 and IL-13,” Journal of Immunology, vol. 154, no. 4, pp. 1870–1878, 1995.
[57]  S. W. Chensue, K. S. Warmington, E. J. Allenspach et al., “Differential expression and cross-regulatory function of RANTES during mycobacterial (type 1) and schistosomal (type 2) antigen-elicited granulomatous inflammation,” Journal of Immunology, vol. 163, no. 1, pp. 165–173, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133