全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Particle Swarm Optimization for Multiband Metamaterial Fractal Antenna

DOI: 10.1155/2013/989135

Full-Text   Cite this paper   Add to My Lib

Abstract:

The property of self-similarity, recursive irregularity, and space filling capability of fractal antennas makes it useful for various applications in wireless communication, including multiband miniaturized antenna designs. In this paper, an effort has been made to use the metamaterial structures in conjunction with the fractal patch antenna, which resonates at six different frequencies covering both C and X band. Two different types of square SRR are loaded on the fractal antenna for this purpose. Particle swarm optimization (PSO) is used for optimization of these metamaterial structures. The optimized metamaterial structures, after loading upon, show significant increase in performance parameters such as bandwidth, gain, and directivity. 1. Introduction The non-integral dimensions, recursive irregularity, and space filling capability of fractal antennas make it useful for various applications in wireless communication including miniaturized antenna designs [1]. Their property of being self-similar in the geometry leads to antennas of compact size with simplified circuit designs. Antennas, which have fractal geometry, are self-iterative, exhibiting multiband operation. Fractal antennas are frequency independent and have schemes for realizing low sidelobe designs. An antenna with fractal geometry is preferred to conventional antenna designs due to the iterative behavior of the structure, which is believed to improve the performance factors like gain, bandwidth, return loss and frequency of operation [2]. Metamaterials are artificial structures designed by placing electromagnetic (EM) resonators, such as split ring resonators (SRRs), at regular intervals. The metamaterials have frequency selective response and exhibit unique EM properties such as negative permittivity and permeability, artificial magnetism and negative refractive index, which can be used to improve the performance of antenna [3]. The media composed of metamaterials have tunable effective material parameters, and their electromagnetic response can be adjusted in real time. By using metamaterials as substrates or superstrates for antenna, significant improvements have been observed in the properties of the fractal antenna. In this paper, an effort is made to use the square split ring resonator (SRR) in conjunction with the fractal patch antenna to enhance the directivity, gain, voltage standing wave ratio (VSWR), and bandwidth at multiple resonant frequencies. To serve this purpose, two different types of tunable multiband micro-split metamaterial square SRR are loaded on the fractal

References

[1]  D. H. Werner, R. L. Haupt, and P. L. Werner, “Fractal antenna engineering: the theory and design of fractal antenna arrays,” IEEE Antennas and Propagation Magazine, vol. 41, no. 5, pp. 37–58, 1999.
[2]  T. E. Nur, S. K. Ray, D. Paul, and T. Mollick, “Design of fractal antenna for ultra- wideband applications,” International Journal of Research and Reviews in Wireless Communications, vol. 1, no. 3, pp. 66–74, 2011.
[3]  Y. Rahmat-Samii, “Metamaterials in antenna applications: classifications, designs and applications,” in Proceedings of IEEE International Workshop on Antenna Technology Small Antennas and Novel Metamaterials (IWAT '06), pp. 1–4, March 2006.
[4]  E. Ekmekci, K. Topalli, T. Akin, and G. Turhan-Sayan, “A tunable multi-band metamaterial design using micro-split SRR structures,” Optics Express, vol. 17, no. 18, pp. 16046–16058, 2009.
[5]  J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948, December 1995.
[6]  J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Transactions on Antennas and Propagation, vol. 52, no. 2, pp. 397–407, 2004.
[7]  B. B. Mandelbrot, Fractals. Form, Chance and Dimension, W.H. Freeman, Amsterdam, The Netherlands, 1977.
[8]  J. T. Huang, J. H. Shiao, and J. M. Wu, “A miniaturized Hilbert inverted-F antenna for wireless sensor network applications,” IEEE Transactions on Antennas and Propagation, vol. 58, no. 9, pp. 3100–3103, 2010.
[9]  G. Cui, Y. Liu, and S. Gong, “A novel fractal patch antenna with low RCS,” Journal of Electromagnetic Waves and Applications, vol. 21, no. 15, pp. 2403–2411, 2007.
[10]  H. X. D. Araujo, S. E. Barbin, and L. C. Kretly, “Design of UHF Quasi-Yagi antenna with metamaterial structures for RFID applications,” in Proceedings of IEEE Microwave and Optoelectronics Conference, pp. 8–11, November 2011.
[11]  Y. B. Thakare and Rajkumar, “Design of fractal patch antenna for size and radar cross-section reduction,” IET Microwaves, Antennas and Propagation, vol. 4, no. 2, pp. 175–181, 2010.
[12]  V. Crnojevi?-Bengin, V. Radoni?, and B. Jokanovi?, “Fractal geometries of complementary split-ring resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp. 2312–2321, 2008.
[13]  M. Palandoken and H. Henke, “Fractal negative-epsilon metamaterial,” in Proceedings of the International Workshop on Antenna Technology: Small Antennas, Innovative Structures and Materials (iWAT '10), pp. 1–4, March 2010.
[14]  J. McVay, N. Engheta, and A. Hoorfar, “High impedance metamaterial surfaces using Hilbert-curve inclusions,” IEEE Microwave and Wireless Components Letters, vol. 14, no. 3, pp. 130–132, 2004.
[15]  L. Yousefi and O. M. Ramahi, “Miniaturized wideband antenna using engineered magnetic materials with multi-resonator inclusions,” in Proceedings of the IEEE Antennas and Propagation Society International Symposium (AP-S '07), pp. 1885–1888, June 2007.
[16]  J. Ju, D. Kim, W. J. Lee, and J. I. Choi, “Wideband high-gain antenna using metamaterial superstrate with the zero refractive index,” Microwave and Optical Technology Letters, vol. 51, no. 8, pp. 1973–1976, 2009.
[17]  S. Suganthi, S. Raghavan, and D. Kumar, “Miniature fractal antenna design and simulation for wireless applications,” in Proceedings of the IEEE International Conference on Recent Advances in Intelligent Computational Systems Trivandrum (RAICS '11), September 2011.
[18]  B. Choudhury, S. Bisoyi, G. Hiremath, and R. M. Jha, “Emerging trends in soft computing for metamaterial design and optimization,” in Proceedings of the Symposium on Metamaterials, International Conference on Computational and Experimental Engineering and Sciences (ICCES '12), Crete, Greece, April 2012.
[19]  J. W. Fan, C. H. Liang, and X. W. Dai, “Design of cross-coupled dual-band filter with equal-length split-ring resonators,” Progress in Electromagnetics Research, vol. 75, pp. 285–293, 2007.
[20]  F. Bilotti, A. Toscano, and L. Vegni, “Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 8, pp. 2258–2267, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133