全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Nondifferentiable Minimax Programming Problems in Complex Spaces Involving Generalized Convex Functions

DOI: 10.1155/2013/297015

Full-Text   Cite this paper   Add to My Lib

Abstract:

We start our discussion with a class of nondifferentiable minimax programming problems in complex space and establish sufficient optimality conditions under generalized convexity assumptions. Furthermore, we derive weak, strong, and strict converse duality theorems for the two types of dual models in order to prove that the primal and dual problems will have no duality gap under the framework of generalized convexity for complex functions. 1. Introduction The literature of the mathematical programming is crowded with necessary and sufficient conditions for a point to be an optimal solution to the optimization problem. Levinson [1] was the first to study mathematical programming in complex space who extended the basic theorems of linear programming over complex space. In particular, using a variant of the Farkas lemma from real space to complex space, he generalized duality theorems from real linear programming. Since then, linear fractional, nonlinear, and nonlinear fractional complex programming problems were studied by many researchers (see [2–5]). Minimax problems are encountered in several important contexts. One of the major context is zero sum games, where the objective of the first player is to minimize the amount given to the other player and the objective of the second player is to maximize this amount. Ahmad and Husain [6] established sufficient optimality conditions for a class of nondifferentiable minimax fractional programming problems involving -convexity. Later on, Jayswal et al. [7] extended the work of Ahmad and Husain [6] to establish sufficient optimality conditions and duality theorems for the nondifferentiable minimax fractional problem under the assumptions of generalized -convexity. Recently, Jayswal and Kumar [8] established sufficient optimality conditions and duality theorems for a class of nondifferentiable minimax fractional programming problems under the assumptions of -convexity. Lai et al. [9] established several sufficient optimality conditions for minimax programming in complex spaces under the assumptions of generalized convexity of complex functions. Subsequently, they applied the optimality conditions to formulate parametric dual and derived weak, strong, and strict converse duality theorems. The first work on fractional programming in complex space appeared in 1970, when Swarup and Sharma [10] generalized the results of Charnes and Cooper [11] to the complex space. Lai and Huang [12] showed that a minimax fractional programming problem is equivalent to a minimax nonfractional parametric problem for a given parameter

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133