全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage

DOI: 10.1155/2013/369094

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ocular bacterial infections are universally treated with antibiotics, which can eliminate the organism but cannot reverse the damage caused by bacterial products already present. The three very common causes of bacterial keratitis—Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pneumoniae—all produce proteins that directly or indirectly cause damage to the cornea that can result in reduced vision despite antibiotic treatment. Most, but not all, of these proteins are secreted toxins and enzymes that mediate host cell death, degradation of stromal collagen, cleavage of host cell surface molecules, or induction of a damaging inflammatory response. Studies of these bacterial pathogens have determined the proteins of interest that could be targets for future therapeutic options for decreasing corneal damage. 1. Introduction The bacterial agents of infectious keratitis that have been studied in considerable detail are three of the most common causes of such infections, namely, Staphylococcus aureus, Streptococcus pneumoniae, and Pseudomonas aeruginosa [1]. The mechanisms underlying the tissue damage occurring during these infections have been studied in animal models. These infections are initiated by injection of bacteria into the corneal stroma, usually of New Zealand rabbits, or by the application of a topical drop of bacteria to a scarified cornea, usually of a mouse [2]. Important to this research is the relative virulence of three forms of a bacterial strain, namely, the unaltered parent strain, its mutant deficient in a single specific gene coding for a secreted protein, and that same mutant strain following insertion of a functional copy of the mutated gene, a rescued strain. If the parent and rescue strains have statistically equivalent virulence and the mutant has significantly less virulence, then the mutated gene is recognized as a key virulence factor for the cornea [3]. An additional method for establishing a specific gene as a virulence factor is to demonstrate that insertion of this specific gene into a nonpathogenic strain can significantly increase the virulence [3]. These types of genetic analysis of virulence have defined multiple virulence factors for each of the three organisms commonly causing keratitis. The importance of secreted proteins to keratitis can be illustrated by the study of certain nonpathogenic strains of bacteria. One observation that is not generally recognized, but is very important to consider, is that bacteria can be injected into a rabbit cornea and there grow from a small inoculum to millions of

References

[1]  P. Asbell and S. Stenson, “Ulcerative keratitis. Survey of 30 years' laboratory experience,” Archives of Ophthalmology, vol. 100, no. 1, pp. 77–80, 1982.
[2]  D. O. Girgis, G. D. Sloop, J. M. Reed, and R. J. O'Callaghan, “A new topical model of Staphylococcus corneal infection in the mouse,” Investigative Ophthalmology and Visual Science, vol. 44, no. 4, pp. 1591–1597, 2003.
[3]  A. A. Salyers and D. D. Whitt, Bacterial Pathogenesis, a Molecular Approach, ASM Press, Washington, DC, USA, 2nd edition, 2002.
[4]  M. Traidej, A. R. Caballero, M. E. Marquart, B. A. Thibodeaux, and R. J. O'Callaghan, “Molecular analysis of Pseudomonas aeruginosa protease IV expressed in Pseudomonas putida,” Investigative Ophthalmology and Visual Science, vol. 44, no. 1, pp. 190–196, 2003.
[5]  B. A. Thibodeaux, A. R. Caballero, M. E. Marquart, J. Tommassen, and R. J. O'Callaghan, “Corneal virulence of Pseudomonas aeruginosa elastase B and alkaline protease produced by Pseudomonas putida,” Current Eye Research, vol. 32, no. 4, pp. 373–386, 2007.
[6]  R. J. O'Callaghan, “Role of exoproteins in bacterial keratitis: the Fourth Annual Thygeson Lecture, presented at the Ocular Microbiology and Immunology Group Meeting, November 7, 1998,” Cornea, vol. 18, no. 5, pp. 532–537, 1999.
[7]  J. A. Hobden, J. M. Hill, L. S. Engel, and R. J. O'Callaghan, “Age and therapeutic outcome of experimental Pseudomonas aeruginosa keratitis treated with ciprofloxacin, prednisolone, and flurbiprofen,” Antimicrobial Agents and Chemotherapy, vol. 37, no. 9, pp. 1856–1859, 1993.
[8]  J. A. Hobden, L. S. Engel, J. M. Hill, M. C. Callegan, and R. J. O'Callaghan, “Prednisolone acetate or prednisolone phosphate concurrently administered with ciprofloxacin for the therapy of experimental Pseudomonas aeruginosa keratitis,” Current Eye Research, vol. 12, no. 5, pp. 469–473, 1993.
[9]  B. A. Thibodeaux, A. R. Caballero, J. J. Dajcs, M. E. Marquart, L. S. Engel, and R. J. O'Callaghan, “Pseudomonas aeruginosa protease IV: a corneal virulence factor of low immunogenicity,” Ocular Immunology and Inflammation, vol. 13, no. 2-3, pp. 169–182, 2005.
[10]  Y. Ogushi, H. Eguchi, T. Kuwahara, N. Hayabuchi, and M. Kawabata, “Molecular genetic investigations of contaminated contact lens storage cases as reservoirs of Pseudomonas aeruginosa keratitis,” Japanese Journal of Ophthalmology, vol. 54, no. 6, pp. 550–554, 2010.
[11]  E. C. Poggio, R. J. Glynn, O. D. Schein et al., “The incidence of ulcerative keratitis among users of daily-wear and extended-wear soft contact lenses,” New England Journal of Medicine, vol. 321, no. 12, pp. 779–783, 1989.
[12]  O. D. Schein and E. C. Poggio, “Ulcerative keratitis in contact lens wearers. Incidence and risk factors,” Cornea, vol. 9, supplement 1, pp. S55–S58, 1990.
[13]  J. C. Ramirez, S. M. Fleiszig, A. B. Sullivan, C. Tam, R. Borazani, and D. J. Evans, “Traversal of multilayered corneal epithelia by cytotoxic Pseudomonas aeruginosa requires the phospholipase domain of exoU,” Investigative Ophthalmology and Visual Science, vol. 53, no. 1, pp. 448–453, 2012.
[14]  S. S. Twining, S. E. Kirschner, L. A. Mahnke, and D. W. Frank, “Effect of Pseudomonas aeruginosa elastase, alkaline protease, and exotoxin A on corneal proteinases and proteins,” Investigative Ophthalmology and Visual Science, vol. 34, no. 9, pp. 2699–2712, 1993.
[15]  M. E. Marquart, A. R. Caballero, M. Chomnawang, B. A. Thibodeaux, S. S. Twining, and R. J. O'Callaghan, “Identification of a novel secreted protease from Pseudomonas aeruginosa that causes corneal erosions,” Investigative Ophthalmology and Visual Science, vol. 46, no. 10, pp. 3761–3768, 2005.
[16]  Y. Kida, Y. Higashimoto, H. Inoue, T. Shimizu, and K. Kuwano, “A novel secreted protease from Pseudomonas aeruginosa activates NF-κB through protease-activated receptors,” Cellular Microbiology, vol. 10, no. 7, pp. 1491–1504, 2008.
[17]  T. I. Nicas and B. H. Iglewski, “Production of elastase and other exoproducts by environmental isolates of Pseudomonas aeruginosa,” Journal of Clinical Microbiology, vol. 23, no. 5, pp. 967–969, 1986.
[18]  K. Matsumoto, N. B. K. Shams, L. A. Hanninen, and K. R. Kenyon, “Cleavage and activation of corneal matrix metalloproteases by Pseudomonas aeruginosa proteases,” Investigative Ophthalmology and Visual Science, vol. 34, no. 6, pp. 1945–1953, 1993.
[19]  E. Kessler, H. E. Kennah, and S. I. Brown, “Pseudomonas protease. Purification, partial characterization, and its effect on collagen, proteoglycan, and rabbit corneas,” Investigative Ophthalmology and Visual Science, vol. 16, no. 6, pp. 488–497, 1977.
[20]  C. D. White, L. G. Alionte, B. M. Cannon, A. R. Caballero, R. J. O'Callaghan, and J. A. Hobden, “Corneal virulence of LasA protease—deficient Pseudomonas aeruginosa PAO1,” Cornea, vol. 20, no. 6, pp. 643–646, 2001.
[21]  C. M. Pillar, L. D. Hazlett, and J. A. Hobden, “Alkaline protease-deficient mutants of Pseudomonas aeruginosa are virulent in the eye,” Current Eye Research, vol. 21, no. 3, pp. 730–739, 2000.
[22]  J. A. Hobden, “Pseudomonas aeruginosa proteases and corneal virulence,” DNA and Cell Biology, vol. 21, no. 5-6, pp. 391–396, 2002.
[23]  K. A. Kernacki, J. A. Hobden, L. D. Hazlett, R. Fridman, and R. S. Berk, “In vivo bacterial protease production during Pseudomonas aeruginosa corneal infection,” Investigative Ophthalmology and Visual Science, vol. 36, no. 7, pp. 1371–1378, 1995.
[24]  Y. Kida, T. Shimizu, and K. Kuwano, “Cooperation between LepA and PlcH contributes to the in vivo virulence and growth of Pseudomonas aeruginosa in mice,” Infection and Immunity, vol. 79, no. 1, pp. 211–219, 2011.
[25]  A. Caballero, B. Thibodeaux, M. Marquart, M. Traidej, and R. J. O'Callaghan, “Pseudomonas keratitis: protease IV gene conservation, distribution, and production relative to virulence and other pseudomonas proteases,” Investigative Ophthalmology and Visual Science, vol. 45, no. 2, pp. 522–530, 2004.
[26]  T. Conibear, M. Wilcox, J. R. Flanagan, and H. Zhu, “Characterization of protease IV expression in Pseudomonas aeruginosa clinical isolates,” Journal of Medical Microbiology, vol. 61, part 2, pp. 180–190, 2012.
[27]  L. S. Engel, J. M. Hill, A. R. Caballero, L. C. Green, and R. J. O'Callaghan, “Protease IV, a unique extracellular protease and virulence factor from Pseudomonas aeruginosa,” Journal of Biological Chemistry, vol. 273, no. 27, pp. 16792–16797, 1998.
[28]  A. R. Caballero, J. M. Moreau, L. S. Engel, M. E. Marquart, J. M. Hill, and R. J. O'Callaghan, “Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases,” Analytical Biochemistry, vol. 290, no. 2, pp. 330–337, 2001.
[29]  J. L. Malloy, R. A. W. Veldhuizen, B. A. Thibodeaux, R. J. O'Callaghan, and J. R. Wright, “Pseudomonas aeruginosa protease IV degrades surfactant proteins and inhibits surfactant host defense and biophysical functions,” American Journal of Physiology/Lung Cell Molecular Physiology, vol. 288, no. 2, pp. L409–L418, 2005.
[30]  A. Tang, M. E. Marquart, J. D. Fratkin et al., “Properties of PASP: a pseudomonas protease capable of mediating corneal erosions,” Investigative Ophthalmology and Visual Science, vol. 50, no. 8, pp. 3794–3801, 2009.
[31]  R. J. O'Callaghan, A. Tang, M. E. Marquart, and A. R. Caballero, “Pseudomonas aeruginosa Small Protease (PASP), a keratitis virulence factor,” Investigative Ophthalmology and Visual Science, vol. 53, 2012, E-abstract 6128.
[32]  A. G. Al Otaibi, K. Allam, A. J. Damri, A. A. Shamri, H. Kalantan, and A. Mousa, “Childhood microbial keratitis,” Oman Journal of Ophthalmology, vol. 5, no. 1, pp. 28–31, 2012.
[33]  G. Bashir, A. Shah, M. A. Thokar, S. Rashid, and S. Shakeel, “Bacterial and fungal profile of corneal ulcers—a prospective study,” Indian Journal of Pathology and Microbiology, vol. 48, no. 2, pp. 273–277, 2005.
[34]  M. J. Bharathi, R. Ramakrishnan, S. Vasu, R. Meenakshi, and R. Palaniappan, “Aetiological diagnosis of microbial keratitis in South India—a study of 1618 cases,” Indian Journal of Medical Microbiology, vol. 20, no. 1, pp. 19–24, 2002.
[35]  M. J. Bharathi, R. Ramakrishnan, S. Vasu, R. Meenakshi, C. Shivkumar, and R. Palaniappan, “Epidemiology of bacterial keratitis in a referral centre in south India,” Indian Journal of Medical Microbiology, vol. 21, no. 4, pp. 239–245, 2003.
[36]  M. J. Bharathi, R. Ramakrishnan, R. Meenakshi, S. Padmavathy, C. Shivakumar, and M. Srinivasan, “Microbial keratitis in South India: influence of risk factors, climate, and geographical variation,” Ophthalmic Epidemiology, vol. 14, no. 2, pp. 61–69, 2007.
[37]  M. R. Feilmeier, K. R. Sivaraman, M. Oliva, G. C. Tabin, and R. Gurung, “Etiologic diagnosis of corneal ulceration at a Tertiary Eye Center in Kathmandu, Nepal,” Cornea, vol. 29, no. 12, pp. 1380–1385, 2010.
[38]  R. L. Furlanetto, E. G. V. Andreo, I. G. A. Finotti, E. S. Arcieri, M. A. Ferreira, and F. J. Rocha, “Epidemiology and etiologic diagnosis of infectious keratitis in Uberlandia, Brazil,” European Journal of Ophthalmology, vol. 20, no. 3, pp. 498–503, 2010.
[39]  R. Katiyar, S. Deorukhkar, and S. Saini, “Epidemiological features and laboratory results of bacterial and fungal keratitis: a five-year study at a rural tertiary-care hospital in western Maharashtra, India,” Singapore Medical Journal, vol. 53, no. 4, pp. 264–267, 2012.
[40]  M. J. Bharathi, R. Ramakrishnan, C. Shivakumar, R. Meenakshi, and D. Lionalraj, “Etiology and antibacterial susceptibility pattern of community-acquired bacterial ocular infections in a tertiary eye care hospital in south India,” Indian Journal of Ophthalmology, vol. 58, no. 6, pp. 497–507, 2010.
[41]  S. Boonpasart, N. Kasetsuwan, V. Puangsricharern, L. Pariyakanok, and T. Jittpoonkusol, “Infectious keratitis at King Chulalongkorn Memorial Hospital: a-12-year retrospective study of 391 cases,” Journal of the Medical Association of Thailand, vol. 85, supplement 1, pp. S217–S230, 2002.
[42]  P. Lalitha, M. Srinivasan, P. Manikandan, et al., “Relationship of in vitro susceptibility to moxifloxacin and in vivo clinical outcome in bacterial keratitis,” Clinical Infectious Diseases, vol. 54, no. 10, pp. 1381–1387, 2012.
[43]  T. J. Norina, S. Raihan, S. Bakiah, M. Ezanee, A. T. Liza-Sharmini, and W. H. Wan Hazzabah, “Microbial keratitis: aetiological diagnosis and clinical features in patients admitted to Hospital Universiti Sains Malaysia,” Singapore Medical Journal, vol. 49, no. 1, pp. 67–71, 2008.
[44]  S. Ramesh, R. Ramakrishnan, M. J. Bharathi, M. Amuthan, and S. Viswanathan, “Prevalence of bacterial pathogens causing ocular infections in South India,” Indian Journal of Pathology and Microbiology, vol. 53, no. 2, pp. 281–286, 2010.
[45]  F. Schaefer, O. Bruttin, L. Zografos, and Y. Guex-Crosier, “Bacterial keratitis: a prospective clinical and microbiological study,” British Journal of Ophthalmology, vol. 85, no. 7, pp. 842–847, 2001.
[46]  Z. Shalchi, A. Gurbaxani, M. Baker, and J. Nash, “Antibiotic resistance in microbial keratitis: ten-year experience of corneal scrapes in the United Kingdom,” Ophthalmology, vol. 118, no. 11, pp. 2161–2165, 2011.
[47]  G. Varaprasathan, K. Miller, T. Lietman et al., “Trends in the etiology of infectious corneal ulcers at the F. I. Proctor Foundation,” Cornea, vol. 23, no. 4, pp. 360–364, 2004.
[48]  M. D. Wagoner, S. A. Al-Swailem, J. E. Sutphin, and M. B. Zimmerman, “Bacterial keratitis after penetrating keratoplasty. Incidence, microbiological profile, graft survival, and visual outcome,” Ophthalmology, vol. 114, no. 6, pp. 1073–1079, 2007.
[49]  S. Yilmaz, I. Ozturk, and A. Maden, “Microbial keratitis in West Anatolia, Turkey: a retrospective review,” International Ophthalmology, vol. 27, no. 4, pp. 261–268, 2007.
[50]  C. B. Cosar, E. J. Cohen, C. J. Rapuano, and P. R. Laibson, “Clear corneal wound infection after phacoemulsification,” Archives of Ophthalmology, vol. 119, no. 12, pp. 1755–1759, 2001.
[51]  T. Lifshitz, J. Levy, F. Raiskup, I. Klemperer, and J. Frucht-Pery, “Two cases of pneumococcal keratitis following myopic LASIK,” Journal of Refractive Surgery, vol. 21, no. 5, pp. 498–501, 2005.
[52]  M. E. Mulet, J. J. Pérez-Santonja, C. Ferrer, and J. L. Alió, “Microbial keratitis after intrastromal corneal ring segment implantation,” Journal of Refractive Surgery, vol. 26, no. 5, pp. 364–369, 2010.
[53]  M. Nubile, P. Carpineto, M. Lanzini, M. Ciancaglini, E. Zuppardi, and L. Mastropasqua, “Multilayer amniotic membrane transplantation for bacterial keratitis with corneal perforation after hyperopic photorefractive keratectomy. Case report and literature review,” Journal of Cataract and Refractive Surgery, vol. 33, no. 9, pp. 1636–1640, 2007.
[54]  U. Rehany, G. Balut, E. Lefler, and S. Rumelt, “The prevalence and risk factors for donor corneal button contamination and its association with ocular infection after transplantation,” Cornea, vol. 23, no. 7, pp. 649–654, 2004.
[55]  F. Griffith, “The significance of pneumococcal types,” Journal of Hygiene, vol. 27, no. 2, pp. 113–159, 1928.
[56]  O. T. Avery, C. M. MacLeod, and M. McCarty, “Studies on the chemical nature of the substance inducing transformation of pneumococcal types: induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III,” Journal of Experimental Medicine, vol. 79, no. 1, pp. 137–158, 1944.
[57]  E. W. Norcross, N. A. Tullos, S. D. Taylor, M. E. Sanders, and M. E. Marquart, “Assessment of Streptococcus pneumoniae capsule in conjunctivitis and keratitis in vivo neuraminidase activity increases in nonencapsulated pneumococci following conjunctival infection,” Current Eye Research, vol. 35, no. 9, pp. 787–798, 2010.
[58]  J. M. Reed, R. J. O'Callaghan, D. O. Girgis, C. C. McCormick, A. R. Caballero, and M. E. Marquart, “Ocular virulence of capsule-deficient Streptococcus pneumoniae in a rabbit keratitis model,” Investigative Ophthalmology and Visual Science, vol. 46, no. 2, pp. 604–608, 2005.
[59]  M. K. Johnson, “Cellular location of pneumolysin,” FEMS Microbiology Letters, vol. 2, no. 5, pp. 243–245, 1977.
[60]  K. Kanclerski and R. M?llby, “Production and purification of Streptococcus pneumoniae hemolysin (pneumolysin),” Journal of Clinical Microbiology, vol. 25, no. 2, pp. 222–225, 1987.
[61]  C. Steinfort, R. Wilson, T. Mitchell et al., “Effect of Streptococcus pneumoniae on human respiratory epithelium in vitro,” Infection and Immunity, vol. 57, no. 7, pp. 2006–2013, 1989.
[62]  K. E. Price and A. Camilli, “Pneumolysin localizes to the cell wall of Streptococcus pneumoniae,” Journal of Bacteriology, vol. 191, no. 7, pp. 2163–2168, 2009.
[63]  P. J. Morgan, S. C. Hyman, O. Byron, P. W. Andrew, T. J. Mitchell, and A. J. Rowe, “Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form,” Journal of Biological Chemistry, vol. 269, no. 41, pp. 25315–25320, 1994.
[64]  P. J. Morgan, S. C. Hyman, A. J. Rowe, T. J. Mitchell, P. W. Andrew, and H. R. Saibil, “Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin,” FEBS Letters, vol. 371, no. 1, pp. 77–80, 1995.
[65]  S. J. Tilley, E. V. Orlova, R. J. C. Gilbert, P. W. Andrew, and H. R. Saibil, “Structural basis of pore formation by the bacterial toxin pneumolysin,” Cell, vol. 121, no. 2, pp. 247–256, 2005.
[66]  M. K. Johnson, D. Boese-Marrazzo, and W. A. Pierce Jr., “Effects of pneumolysin on human polymorphonuclear leukocytes and platelets,” Infection and Immunity, vol. 34, no. 1, pp. 171–176, 1981.
[67]  J. C. Paton, B. Rowan Kelly, and A. Ferrante, “Activation of human complement by the pneumococcal toxin pneumolysin,” Infection and Immunity, vol. 43, no. 3, pp. 1085–1087, 1984.
[68]  M. K. Johnson and J. H. Allen, “Ocular toxin of the pneumococcus,” American Journal of Ophthalmology, vol. 72, no. 1, pp. 175–180, 1971.
[69]  M. K. Johnson and J. H. Allen, “The role of cytolysin in pneumococcal ocular infection,” American Journal of Ophthalmology, vol. 80, no. 3, part 2, pp. 518–521, 1975.
[70]  M. K. Johnson, J. A. Hobden, M. Hagenah, R. J. O'Callaghan, J. M. Hill, and S. Chen, “The role of pneumolysin in ocular infections with Streptococcus pneumoniae,” Current Eye Research, vol. 9, no. 11, pp. 1107–1114, 1990.
[71]  M. K. Johnson, M. C. Callegan, L. S. Engel et al., “Growth and virulence of a complement-activation-negative mutant of Streptococcus pneumoniae in the rabbit cornea,” Current Eye Research, vol. 14, no. 4, pp. 281–284, 1995.
[72]  J. C. Harrison, Z. A. Karcioglu, and M. K. Johnson, “Response of leukopenic rabbits to pneumococcal toxin,” Current Eye Research, vol. 2, no. 10, pp. 705–710, 1982-1983.
[73]  S. N. Green, M. Sanders, Q. C. Moore III et al., “Protection from Streptococcus pneumoniae keratitis by passive immunization with pneumolysin antiserum,” Investigative Ophthalmology and Visual Science, vol. 49, no. 1, pp. 290–294, 2008.
[74]  Q. C. Moore III, C. C. McCormick, E. W. Norcross et al., “Development of a Streptococcus pneumoniae keratitis model in mice,” Ophthalmic Research, vol. 42, no. 3, pp. 141–146, 2009.
[75]  M. K. Johnson, C. Geoffroy, and J. E. Alouf, “Binding of cholesterol by sulfhydryl-activated cytolysins,” Infection and Immunity, vol. 27, no. 1, pp. 97–101, 1980.
[76]  M. E. Marquart, K. S. Monds, C. C. McCormick et al., “Cholesterol as treatment for pneumococcal keratitis: cholesterol-specific inhibition of pneumolysin in the cornea,” Investigative Ophthalmology and Visual Science, vol. 48, no. 6, pp. 2661–2666, 2007.
[77]  M. E. Sanders, N. A. Tullos, S. D. Taylor et al., “Moxifloxacin and cholesterol combined treatment of pneumococcal keratitis,” Current Eye Research, vol. 35, no. 12, pp. 1142–1147, 2010.
[78]  E. W. Norcross, M. E. Sanders, Q. C. Moore III, et al., “Active immunization with pneumolysin versus 23-valent polysaccharide vaccine for Streptococcus pneumoniae keratitis,” Investigative Ophthalmology and Visual Science, vol. 52, no. 12, pp. 9232–9243, 2011.
[79]  A. M. Mitchell and T. J. Mitchell, “Streptococcus pneumoniae: virulence factors and variation,” Clinical Microbiology and Infection, vol. 16, no. 5, pp. 411–418, 2010.
[80]  Y. M. Williamson, R. Gowrisankar, D. L. Longo et al., “Adherence of nontypeable Streptococcus pneumoniae to human conjunctival epithelial cells,” Microbial Pathogenesis, vol. 44, no. 3, pp. 175–185, 2008.
[81]  B. Govindarajan, B. B. Menon, S. Spurr-Michaud, et al., “A metalloproteinase secreted by Streptococcus pneumoniae removes membrane mucin MUC16 from the epithelial glycocalyx barrier,” PLoS One, vol. 7, no. 3, article e32418, 2012.
[82]  T. J. Liesegang, “Bacterial keratitis,” in The Cornea, H. E. Kaufman, B. A. Baron, and M. A. McDonald, Eds., Butterworth-Heineman, Boston, Mass, USA, 1998.
[83]  V. W. Wong, T. Y. Lai, S. C. Chi, and D. S. Lam, “Pediatric ocular surface infections: a 5-year review of demographics, clinical features, risk factors, microbiological results, and treatment,” Cornea, vol. 30, no. 9, pp. 995–1002, 2011.
[84]  B. H. Jeng, D. C. Gritz, A. B. Kumar et al., “Epidemiology of ulcerative keratitis in Northern California,” Archives of Ophthalmology, vol. 128, no. 8, pp. 1022–1028, 2010.
[85]  N. Kerr and G. A. Stern, “Bacterial keratitis associated with vernal keratoconjunctivitis,” Cornea, vol. 11, no. 4, pp. 355–359, 1992.
[86]  M. L. Palmer and R. A. Hyndiuk, “Contact lens-related infectious keratitis,” International Ophthalmology Clinics, vol. 33, no. 1, pp. 23–49, 1993.
[87]  J. W. Sowka, A. S. Gurwood, and A. G. Kabat, Handbook of Ocular Disease Management Web Site: Bacterial Keratitis, Jobson Publishing, 2001.
[88]  E. Tacconelli and A. P. Johnson, “National guidelines for decolonization of methicillin-resistant Staphylococcus aureus carriers: the implications of recent experience in the Netherlands,” The Journal of Antimicrobial Chemotherapy, vol. 66, no. 10, pp. 2195–2198, 2011.
[89]  M. G. Speaker, F. A. Milch, M. K. Shah, W. Eisner, and B. N. Kreiswirth, “Role of external bacterial flora in the pathogenesis of acute postoperative endophthalmitis,” Ophthalmology, vol. 98, no. 5, pp. 639–649, 1991.
[90]  R. K?ck, J. Harlizius, N. Bressan et al., “Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals,” European Journal of Clinical Microbiology and Infectious Diseases, vol. 28, no. 11, pp. 1375–1382, 2009.
[91]  J. Cheung and A. R. Slomovic, “Microbial etiology and predisposing factors among patients hospitalized for corneal ulceration,” Canadian Journal of Ophthalmology, vol. 30, no. 5, pp. 251–255, 1995.
[92]  L. D. Ormerod, E. Hertzmark, D. S. Gomez, R. G. Stabiner, D. J. Schanzlin, and R. E. Smith, “Epidemiology of microbial keratitis in Southern California. A multivariate analysis,” Ophthalmology, vol. 94, no. 10, pp. 1322–1333, 1987.
[93]  D. J. Coster and P. R. Badenoch, “Host, microbial, and pharmacological factors affecting the outcome of suppurative keratitis,” British Journal of Ophthalmology, vol. 71, no. 2, pp. 96–101, 1987.
[94]  P. A. Asbell, D. F. Sahm, M. Shaw, D. C. Draghi, and N. P. Brown, “Increasing prevalence of methicillin resistance in serious ocular infections caused by Staphylococcus aureus in the United States: 2000 to 2005,” Journal of Cataract and Refractive Surgery, vol. 34, no. 5, pp. 814–818, 2008.
[95]  S. B. Dave, H. S. Toma, and S. J. Kim, “Ophthalmic antibiotic use and multidrug-resistant Staphylococcus epidermidis: a controlled, longitudinal study,” Ophthalmology, vol. 118, no. 10, pp. 2035–2040, 2011.
[96]  I. Morrissey, R. Burnett, L. Viljoen, and M. Robbins, “Surveillance of the susceptibility of ocular bacterial pathogens to the fluoroquinolone gatifloxacin and other antimicrobials in Europe during 2001/2002,” The Journal of Infection, vol. 49, no. 2, pp. 109–114, 2004.
[97]  M. McDonald and J. M. Blondeau, “Emerging antibiotic resistance in ocular infections and the role of fluoroquinolones,” Journal of Cataract and Refractive Surgery, vol. 36, no. 9, pp. 1588–1598, 2010.
[98]  H. Schmidt and M. Hensel, “Pathogenicity islands in bacterial pathogenesis,” Clinical Microbiology Reviews, vol. 17, no. 1, pp. 14–56, 2004.
[99]  M. C. Enright, “The population structure of Staphylococcus aureus,” in Staphylococcus Molecular Genetics, J. A. Lindsay, Ed., pp. 29–43, Caister Academic Press, Norfolk, UK, 2008.
[100]  P. R. McAdam, K. E. Templeton, G. F. Edwards, et al., “Molecular tracing of the emergence, adaptation, and transmission of hospital-associated methicillin-resistant Staphylococcus aureus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 23, pp. 9107–9112, 2012.
[101]  B. D. Jett and M. S. Gilmore, “Internalization of Staphylococcus aureus by human corneal epithelial cells: role of bacterial fibronectin-binding protein and host cell factors,” Infection and Immunity, vol. 70, no. 8, pp. 4697–4700, 2002.
[102]  M. N. Rhem, E. M. Lech, J. M. Patti et al., “The collagen-binding adhesin is a virulence factor in Staphylococcus aureus keratitis,” Infection and Immunity, vol. 68, no. 6, pp. 3776–3779, 2000.
[103]  D. O. Girgis, J. J. Dajcs, and R. J. O'Callaghan, “Phospholipase A2 activity in normal and Staphylococcus aureus-infected rabbit eyes,” Investigative Ophthalmology and Visual Science, vol. 44, no. 1, pp. 197–202, 2003.
[104]  J. M. Moreau, D. O. Girgis, E. B. H. Hume, J. J. Dajcs, M. S. Austin, and R. J. O'Callaghan, “Phospholipase A2 in rabbit tears: a host defense against Staphylococcus aureus,” Investigative Ophthalmology and Visual Science, vol. 42, no. 10, pp. 2347–2354, 2001.
[105]  E. B. H. Hume, J. J. Dajcs, J. M. Moreau, G. D. Sloop, M. D. P. Willcox, and R. J. O'Callaghan, “Staphylococcus corneal virulence in a new topical model of infection,” Investigative Ophthalmology and Visual Science, vol. 42, no. 12, pp. 2904–2908, 2001.
[106]  R. J. O'Callaghan, M. C. Callegan, J. M. Moreau et al., “Specific roles of alpha-toxin and beta-toxin during Staphylococcus aureus corneal infection,” Infection and Immunity, vol. 65, no. 5, pp. 1571–1578, 1997.
[107]  J. M. Moreau, G. D. Sloop, L. S. Engel, J. M. Hill, and R. J. O'Callaghan, “Histopathological studies of staphylococcal alpha-toxin: effects on rabbit corneas,” Current Eye Research, vol. 16, no. 12, pp. 1221–1228, 1997.
[108]  D. O. Girgis, G. D. Sloop, J. M. Reed, and R. J. O'Callaghan, “A new topical model of Staphylococcus corneal infection in the mouse,” Investigative Ophthalmology and Visual Science, vol. 44, no. 4, pp. 1591–1597, 2003.
[109]  D. O. Girgis, G. D. Sloop, J. M. Reed, and R. J. O'Callaghan, “Effects of toxin production in a murine model of Staphylococcus aureus keratitis,” Investigative Ophthalmology and Visual Science, vol. 46, no. 6, pp. 2064–2070, 2005.
[110]  C. Kebaier, R. C. Chamberland, I. C. Allen, et al., “Staphylococcus aureusα-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome,” Journal of Infectious Diseases, vol. 205, no. 5, pp. 807–817, 2012.
[111]  G. Menestrina, M. D. Serra, and G. Prévost, “Mode of action of β-barrel pore-forming toxins of the staphylococcal α-hemolysin family,” Toxicon, vol. 39, no. 11, pp. 1661–1672, 2001.
[112]  S. Pany, R. Vijayvargia, and M. V. Krishnasastry, “Caveolin-1 binding motif of α-hemolysin: its role in stability and pore formation,” Biochemical and Biophysical Research Communications, vol. 322, no. 1, pp. 29–36, 2004.
[113]  R. Vijayvargia, C. G. Suresh, and M. V. Krishnasastry, “Functional form of caveolin-1 is necessary for the assembly of α-hemolysin,” Biochemical and Biophysical Research Communications, vol. 324, no. 3, pp. 1130–1136, 2004.
[114]  C. C. McCormick, A. R. Caballero, C. L. Balzli, A. Tang, and R. J. O'Callaghan, “Chemical inhibition of alpha-toxin, a key corneal virulence factor of Staphylococcus aureus,” Investigative Ophthalmology and Visual Science, vol. 50, no. 6, pp. 2848–2854, 2009.
[115]  A. C. Weeks, C. L. Balzli, A. R. Caballero, A. Tang, and R. J. O'Callaghan, “Identification and potency of cyclodextrin-lipid inhibitors of Staphylococcus aureusα-toxin,” Current Eye Research, vol. 37, no. 2, pp. 87–93, 2012.
[116]  J. H. Freer and J. P. Arbuthnott, “Toxins of Staphylococcus aureus,” Pharmacology and Therapeutics, vol. 19, no. 1, pp. 55–106, 1982.
[117]  M. Clyne, J. De Azavedo, E. Carlson, and J. Arbuthnott, “Production of gamma-hemolysin and lack of production of alpha-hemolysin by Staphylococcus aureus strains associated with toxic shock syndrome,” Journal of Clinical Microbiology, vol. 26, no. 3, pp. 535–539, 1988.
[118]  J. J. Dajcs, M. S. Austin, G. D. Sloop et al., “Corneal pathogenesis of Staphylococcus aureus strain Newman,” Investigative Ophthalmology and Visual Science, vol. 43, no. 4, pp. 1109–1115, 2002.
[119]  G. Supersac, Y. Piémont, M. Kubina, G. Prévost, and T. J. Foster, “Assessment of the role of gamma-toxin in experimental endophthalmitis using a hlg-deficient mutant of Staphylococcus aureus,” Microbial Pathogenesis, vol. 24, no. 4, pp. 241–251, 1998.
[120]  A. M. Arana, C. L. Balzli, A. C. Weeks, A. Tang, A. R. Caballero, and R. J. O'Callaghan, “Pathogenesis of Staphylococcus aureus endophthalmitis: analysis of alpha-toxin and gamma-toxin in the rabbit anterior chamber,” Investigative Ophthalmology & Visual Science, vol. 53, 2012, E-abstract 2772.
[121]  K. Yamashita, Y. Kawai, Y. Tanaka, et al., “Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two component,” Proceeding of the National Academy of Sciences of the United States of America, vol. 108, no. 42, pp. 17314–17319, 2011.
[122]  A. Gravet, D. A. Colin, D. Keller, R. Girardot, H. Monteil, and G. Prevost, “Characterization of a novel structural member, LukE-LukD, of the bi-component staphylococcal leucotoxins family,” FEBS Letters, vol. 436, no. 2, pp. 202–208, 1998.
[123]  S. Szmigieski, G. Prevost, H. Monteil, D. A. Colin, and J. Jelaszewicz, “Leukocidal toxins of staphylococci,” Zentralblatt für Bakteriologie, vol. 289, no. 2, pp. 185–201, 1999.
[124]  N. Sugawara, T. Tomita, and Y. Kamio, “Assembly of Staphylococcus aureusγ-hemolysin into a pore-forming ring- shaped complex on the surface of human erythrocytes,” FEBS Letters, vol. 410, no. 2-3, pp. 333–337, 1997.
[125]  A. R. Caballero, T. J. Foster, I. R. Monk, A. Tang, C. L. Balzli, and R. J. O'Callaghan, “Ocular pathology of a Staphylococcus aureus mutant lacking a recently discovered virulence factor,” Investigative Ophthalmology and Visual Science, vol. 51, 2010, E-abstract 3891.
[126]  J. D. Fraser and T. Proft, “The bacterial superantigen and superantigen-like proteins,” Immunological Reviews, vol. 225, no. 1, pp. 226–243, 2008.
[127]  A. R. Caballero, C. C. McCormick, A. Tang, and R. J. O'Callaghan, “Isolation and characterization of a new Staphylococcus aureus protease,” Investigative Ophthalmology and Visual Science, vol. 49, 2008, abstract 5514.
[128]  N. Balaban and R. P. Novick, “Autocrine regulation of toxin synthesis by Staphylococcus aureus,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 5, pp. 1619–1623, 1995.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133