Purpose: To evaluate the outcomes of the hybrid technique of posterior lamellar keratoplasty (DMEK-S). Materials and Methods: 71 eyes of 55 patients enrolled in a single-center study underwent posterior lamellar keratoplasty with a hybrid lamella DMEK-S implanted using a solution implantation technique, owing to endothelial dysfunction. The outcome measures studied were visual acuity and endothelial cell density. Results: The rate of endothelial cell loss caused by surgery was 43.8%. During followups, we observed the stabilization of postoperative findings, or at minimum a very low rate of corneal endothelial cell loss. The UCDVA and BCDVA dramatically improved postoperatively. The rebubbling rate in our group of patients was 61.9%. We replaced the lamella due to its failure or malfunction in 17 patients (23.9%). Conclusion: In summary, DMEK-S combines the advantages of DSEK/DSAEK and DMEK. The central zone of bare Descemet’s membrane and endothelium allows for very good visual outcomes, and the peripheral rim allows for better manipulation of the lamella during implantation. It is an effective method of treating the endothelial dysfunction of various etiologies, but the high complication rate needs to be addressed before widespread implementation of the technique in the future. 1. Introduction Corneal endothelium dysfunction, as well as the resulting reduced transparency due to corneal edema, remains a major indication for corneal transplantation. Until 1998, the only known technique for exchanging the corneal endothelium was a full-thickness corneal transplantation—penetrating keratoplasty, even though this type of disease affects only a thin inner layer of cells—the endothelium. In 1998, Dr. Melles published results from the first successful transplantation of the posterior corneal layer—posterior lamellar keratoplasty (PLK) [1]. Its main advantages compared to conventional penetrating keratoplasty are a rapid improvement in visual functions, lower incidence of serious postoperative complications, a sutureless technique and significantly higher comfort for the patient [1, 2]. The disadvantages of these surgeries are the relatively high technical difficulty involved and the high loss of transplanted endothelium cells during the procedure in the early postoperative period [3, 4]. Therefore, many eye surgeons have focused on this issue in an attempt to simplify the procedure and improve the long-term results of lamellar keratoplasty. The optimal procedure has not yet been clearly established and there are many variations of the operation. 1.1.
References
[1]
G. R. J. Melles, F. A. G. J. Eggink, F. Lander et al., “A surgical technique for posterior lameliar keratoplasty,” Cornea, vol. 17, no. 6, pp. 618–626, 1998.
[2]
I. Bahar, I. Kaiserman, P. McAllum, A. Slomovic, and D. Rootman, “Comparison of Posterior Lamellar Keratoplasty techniques to penetrating keratoplasty,” Ophthalmology, vol. 115, no. 9, pp. 1525–1533, 2008.
[3]
A. Villarrubia, E. Palacín, C. Aránguez, J. Solana, and C. R. García-Alonso, “Complications after endothelial keratoplasty: three years of experience,” Archivos de la Sociedad Espa?ola de Oftalmología, vol. 86, no. 6, pp. 180–186, 2011.
[4]
C. S. Jordan, M. O. Price, R. Trespalacios, and F. W. Price Jr., “Graft rejection episodes after Descemet stripping with endothelial keratoplasty—part one: clinical signs and symptoms,” British Journal of Ophthalmology, vol. 93, no. 3, pp. 387–390, 2009.
[5]
R. S. Mashor, I. Kaiserman, N. L. Kumar, W. Sansanayudh, and D. S. Rootman, “Deep Lamellar endothelial keratoplasty. Up to 5-year follow-up,” Ophthalmology, vol. 117, no. 4, pp. 680–686, 2010.
[6]
D. Pieramici, W. R. Green, and W. J. Stark, “Stripping of Descemet's membrane: a clinicopathologic correlation,” Ophthalmic Surgery, vol. 25, no. 4, pp. 226–231, 1994.
[7]
J. Shulman, M. Kropinak, D. C. Ritterband et al., “Failed descemet-stripping automated endothelial keratoplasty grafts: a clinicopathologic analysis,” American Journal of Ophthalmology, vol. 148, no. 5, pp. 752–759, 2009.
[8]
M. S. Gorovoy and A. Ratanasit, “Epithelial downgrowth after descemet stripping automated endothelial keratoplasty,” Cornea, vol. 29, no. 10, pp. 1192–1194, 2010.
[9]
M. A. Terry, J. M. Wall, K. L. Hoar, and P. J. Ousley, “A prospective study of endothelial cell loss during the 2 years after deep Lamellar endothelial keratoplasty,” Ophthalmology, vol. 114, no. 4, pp. 631–639, 2007.
[10]
M. A. Terry, E. S. Chen, N. Shamie, K. L. Hoar, and D. J. Friend, “Endothelial cell loss after Descemet's stripping endothelial keratoplasty in a large prospective series,” Ophthalmology, vol. 115, no. 3, pp. 488–e3, 2008.
[11]
L. Ham, I. Dapena, J. Van Der Wees, and G. R. J. Melles, “Endothelial cell density after descemet membrane endothelial keratoplasty: 1- to 3-year follow-up,” American Journal of Ophthalmology, vol. 149, no. 6, pp. 1016–1017, 2010.
[12]
G. R. J. Melles, T. S. Ong, B. Ververs, and J. Van Der Wees, “Descemet membrane endothelial keratoplasty (DMEK),” Cornea, vol. 25, no. 8, pp. 987–990, 2006.
[13]
P. Studeny, A. Farkas, M. Vokrojova, P. Liskova, and K. Jirsova, “Descemet membrane endothelial keratoplasty with a stromal rim (DMEK-S),” British Journal of Ophthalmology, vol. 94, no. 7, pp. 909–914, 2010.
[14]
P. Kim, E. Brodbaker, A. Litchtinger et al., “Outcomes of repeat endothelial keratoplasty in patients with failed deep lamellar endothelial keratoplasty,” Cornea, vol. 31, no. 10, pp. 1154–1157, 2012.
[15]
L. H. Suh, S. H. Yoo, A. Deobhakta et al., “Complications of Descemet's Stripping with Automated Endothelial Keratoplasty. Survey of 118 Eyes at One Institute,” Ophthalmology, vol. 115, no. 9, pp. 1517–1524, 2008.
[16]
M. O. Price, K. M. Fairchild, D. A. Price, and F. W. Price Jr., “Descemet's stripping endothelial keratoplasty: five-year graft survival and endothelial cell loss,” Ophthalmology, vol. 118, no. 4, pp. 725–729, 2011.