全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficacy of Ethanol Extract of Fructus lycii and Its Constituents Lutein/Zeaxanthin in Protecting Retinal Pigment Epithelium Cells against Oxidative Stress: In Vivo and In Vitro Models of Age-Related Macular Degeneration

DOI: 10.1155/2013/862806

Full-Text   Cite this paper   Add to My Lib

Abstract:

Age-related macular degeneration (AMD) is a major cause of blindness worldwide. Oxidative stress plays a large role in the pathogenesis of AMD. The present study was to evaluate the effects of Fructus lycii ethanol extract on AMD in mice and to investigate whether combination of lutein and zeaxanthin, two carotenoid pigments in Fructus lycii, could protect human retinal pigment epithelial ARPE-19 cells treated with hydrogen peroxide (H2O2) in vitro. We found that severe sediment beneath retinal pigment epithelium and thickened Bruch membrane occurred in AMD mice. However, Fructus lycii ethanol extract improved the histopathologic changes and decreased the thickness of Bruch membrane. Furthermore, the gene and protein expression of cathepsin B and cystatin C was upregulated in AMD mice but was eliminated by Fructus lycii ethanol extract. Investigations in vitro showed that ARPE-19 cell proliferation was suppressed by H2O2. However, lutein/zeaxanthin not only stimulated cell proliferation but also abrogated the enhanced expression of MMP-2 and TIMP-1 in H2O2-treated ARPE-19 cells. These data collectively suggested that Fructus lycii ethanol extract and its active components lutein/zeaxanthin had protective effects on AMD in vivo and in vitro, providing novel insights into the beneficial role of Fructus lycii for AMD therapy. 1. Introduction Age-related macular degeneration (AMD) represents a progressive chronic disease of the central retina and is a leading cause of vision loss worldwide. The cause of AMD is complex, and many risk factors have been implicated including age, genetics, diet, and other environmental risk factors. Most of the visual loss occurs in the late stages of the disease due to one of two processes: neovascular AMD (wet AMD) and atrophic AMD (dry AMD) [1]. The recent few decades have witnessed advances in the treatment of wet AMD. Antiangiogenic agents targeting choroidal neovascularization such as pegaptanib, bevacizumab, and ranibizumab have shown a therapeutic promise for wet AMD [2–4]. Unfortunately, there is currently no proven treatment for dry AMD in the clinical context. Increasing understanding of the pathogenesis of AMD reveals that cathepsin B and cystatin C have important functions in the catabolism of outer membranous disc of visual cells. Cathepsin B is a thiol-dependent lysosomal proteinase that can degrade collagens, connective tissue proteins, and certain native enzymes [5]. Visual cells also secrete cystatin C, resulting in protection of the surface proteins from degradation. More recently, epidemiological evidence

References

[1]  L. S. Lim, P. Mitchell, J. M. Seddon, F. G. Holz, and T. Y. Wong, “Age-related macular degeneration,” The Lancet, vol. 379, no. 9827, pp. 1728–1738, 2012.
[2]  D. S. Dhoot and P. K. Kaiser, “Ranibizumab for age-related macular degeneration,” Expert Opinion on Biological Therapy, vol. 12, no. 3, pp. 371–381, 2012.
[3]  J. M. Pitlick, K. F. Vecera, K. N. Barnes, J. W. Reski, and A. B. Forinash, “Bevacizumab for the treatment of neovascular age-related macular degeneration,” Annals of Pharmacotherapy, vol. 46, no. 2, pp. 290–296, 2012.
[4]  J. L. Colquitt, J. Jones, S. C. Tan, A. Takeda, A. J. Clegg, and A. Price, “Ranibizumab and pegaptanib for the treatment of age-related macular degeneration: a systematic review and economic evaluation,” Health Technology Assessment, vol. 12, no. 16, pp. iii-iv–ix-201, 2008.
[5]  N. Obermajer, Z. Jevnikar, B. Doljak, and J. Kos, “Role of cysteine cathepsins in matrix degradation and cell signalling,” Connective Tissue Research, vol. 49, no. 3-4, pp. 193–196, 2008.
[6]  L. Paraoan, P. Hiscott, C. Gosden, and I. Grierson, “Cystatin C in macular and neuronal degenerations: implications for mechanism(s) of age-related macular degeneration,” Vision Research, vol. 50, no. 7, pp. 737–742, 2010.
[7]  F. Treumer, A. Klettner, J. Baltz et al., “Vectorial release of matrix metalloproteinases (MMPs) from porcine RPE-choroid explants following selective retina therapy (SRT): towards slowing the macular ageing process,” Experimental Eye Research, vol. 97, no. 1, pp. 63–72, 2012.
[8]  S. G. Jarrett and M. E. Boulton, “Consequences of oxidative stress in age-related macular degeneration,” Molecular Aspects of Medicine, vol. 33, pp. 399–417, 2012.
[9]  Z. Yildirim, N. I. Ucgun, and F. Yildirim, “The role of oxidative stress and antioxidants in the pathogenesis of age-related macular degeneration,” Clinics, vol. 66, no. 5, pp. 743–746, 2011.
[10]  M. Pons, S. W. Cousins, K. G. Csaky, G. Striker, and M. E. Marin-Casta?o, “Cigarette smoke-related hydroquinone induces filamentous actin reorganization and heat shock protein 27 phosphorylation through p38 and extracellular signal-regulated kinase 1/2 in retinal pigment epithelium: implications for age-related macular degeneration,” American Journal of Pathology, vol. 177, no. 3, pp. 1198–1213, 2010.
[11]  J. A. Mares and S. M. Moeller, “Diet and age-related macular degeneration: expanding our view,” American Journal of Clinical Nutrition, vol. 83, no. 4, pp. 733–734, 2006.
[12]  G.-H. Lee, Y. Shin, and M.-J. Oh, “Aroma-active components of Lycii fructus (kukija),” Journal of Food Science, vol. 73, no. 6, pp. C500–C505, 2008.
[13]  J. van de Kraats, M. J. Kanis, S. W. Genders, and D. Van Norren, “Lutein and zeaxanthin measured separately in the living human retina with fundus reflectometry,” Investigative Ophthalmology and Visual Science, vol. 49, no. 12, pp. 5568–5573, 2008.
[14]  Y. Ozawa, M. Sasaki, N. Takahashi, M. Kamoshita, S. Miyake, and K. Tsubota, “Neuroprotective effects of lutein in the retina,” Current Pharmaceutical Design, vol. 18, no. 1, pp. 51–56, 2012.
[15]  Y. Nakajima, M. Shimazawa, K. Otsubo, T. Ishibashi, and H. Hara, “Zeaxanthin, a retinal carotenoid, protects retinal cells against oxidative stress,” Current Eye Research, vol. 34, no. 4, pp. 311–318, 2009.
[16]  D. G. Espinosa-Heidmann, I. J. Suner, P. Catanuto, E. P. Hernandez, M. E. Marin-Castano, and S. W. Cousins, “Cigarette smoke-related oxidants and the development of sub-RPE deposits in an experimental animal model of dry AMD,” Investigative Ophthalmology and Visual Science, vol. 47, no. 2, pp. 729–737, 2006.
[17]  Y. Fu, S. Zheng, J. Lin, J. Ryerse, and A. Chen, “Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation,” Molecular Pharmacology, vol. 73, no. 2, pp. 399–409, 2008.
[18]  T. D. Schmittgen, B. A. Zakrajsek, A. G. Mills, V. Gorn, M. J. Singer, and M. W. Reed, “Quantitative reverse transcription-polymerase chain reaction to study mRNA decay: comparison of endpoint and real-time methods,” Analytical Biochemistry, vol. 285, no. 2, pp. 194–204, 2000.
[19]  D. Veritti, V. Sarao, and P. Lanzetta, “Neovascular age-related macular degeneration,” Ophthalmologica, vol. 227, supplement 1, pp. 11–20, 2012.
[20]  I. K. Sugino, H. Wang, and M. A. Zarbin, “Age-related macular degeneration and retinal pigment epithelium wound healing,” Molecular Neurobiology, vol. 28, no. 2, pp. 177–194, 2003.
[21]  P. S. Mettu, A. R. Wielgus, S. S. Ong, and S. W. Cousins, “Retinal pigment epithelium response to oxidant injury in the pathogenesis of early age-related macular degeneration,” Molecular Aspects of Medicine, vol. 33, pp. 376–398, 2012.
[22]  R. Klein, T. Peto, A. Bird, and M. R. Vannewkirk, “The epidemiology of age-related macular degeneration,” American Journal of Ophthalmology, vol. 137, no. 3, pp. 486–495, 2004.
[23]  D. G. Espinosa-Heidmann, J. Sall, E. P. Hernandez, and S. W. Cousins, “Basal laminar deposit formation in APO B100 transgenic mice: complex interactions between dietary fat, blue light, and vitamin E,” Investigative Ophthalmology and Visual Science, vol. 45, no. 1, pp. 260–266, 2004.
[24]  P. Alizadeh, Z. Smit-McBride, S. L. Oltjen, and L. M. Hjelmeland, “Regulation of cysteine cathepsin expression by oxidative stress in the retinal pigment epithelium/choroid of the mouse,” Experimental Eye Research, vol. 83, no. 3, pp. 679–687, 2006.
[25]  B. Vray, S. Hartmann, and J. Hoebeke, “Immunomodulatory properties of cystatins,” Cellular and Molecular Life Sciences, vol. 59, no. 9, pp. 1503–1512, 2002.
[26]  J. Wassélius, K. H?kansson, K. Johansson, M. Abrahamson, and B. Ehinger, “Identification and localization of retinal cystatin C,” Investigative Ophthalmology and Visual Science, vol. 42, no. 8, pp. 1901–1906, 2001.
[27]  A. J. Chucair, N. P. Rotstein, J. P. SanGiovanni, A. During, E. Y. Chew, and L. E. Politi, “Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid,” Investigative Ophthalmology and Visual Science, vol. 48, no. 11, pp. 5168–5177, 2007.
[28]  J. A. Mares-Perlman, A. I. Fisher, R. Klein et al., “Lutein and zeaxanthin in the diet and serum and their relation to age-related maculopathy in the Third National Health and Nutrition Examination Survey,” American Journal of Epidemiology, vol. 153, no. 5, pp. 424–432, 2001.
[29]  C. Flaxel, J. Bradle, T. Acott, and J. R. Samples, “Retinal pigment epithelium produces matrix metalloproteinases after laser treatment,” Retina, vol. 27, no. 5, pp. 629–634, 2007.
[30]  S. Elliot, P. Catanuto, W. Stetler-Stevenson, and S. W. Cousins, “Retinal pigment epithelium protection from oxidant-mediated loss of MMP-2 activation requires both MMP-14 and TIMP-2,” Investigative Ophthalmology and Visual Science, vol. 47, no. 4, pp. 1696–1702, 2006.
[31]  P. Catanuto, D. Espinosa-Heidmann, S. Pereira-Simon et al., “Mouse retinal pigmented epithelial cell lines retain their phenotypic characteristics after transfection with human papilloma virus: a new tool to further the study of RPE biology,” Experimental Eye Research, vol. 88, no. 1, pp. 99–105, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133