全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Is Spectral-Domain Optical Coherence Tomography Essential for Flexible Treatment Regimens with Ranibizumab for Neovascular Age-Related Macular Degeneration?

DOI: 10.1155/2013/786107

Full-Text   Cite this paper   Add to My Lib

Abstract:

Purpose. To evaluate the ability of spectral-domain optical coherence tomography to detect subtle amounts of retinal fluid when the choroidal neovascularization is detected as inactive via time-domain optical coherence tomography and clinical examination in neovascular age-related macular degeneration (nAMD) patients. Methods. Forty-nine eyes of 49 patients with nAMD after ranibizumab treatment were included in this cross-sectional, prospective study. All patients were imaged with TD-OCT and SD-OCT at the same visit one month after a ranibizumab injection. The presence of subretinal, intraretinal, and subretinal pigment epithelium fluid (subRPE) in SD-OCT was evaluated; also mean central retinal thickness (CRT) and the rate of vitreoretinal surface disorders detected via the two devices were evaluated. Results. The mean CRT via TD-OCT and SD-OCT was and microns. Sixteen patients (32.6%) showed any kind of retinal fluid via SD-OCT. In detail, 8 patients (16.3%) showed subretinal fluid, 10 patients (20.4%) showed intraretinal fluid, and 3 patients (6.1%) showed SubRPE fluid. The ability of detecting vitreoretinal surface disorders was comparable between the two devices, except vitreomacular traction. Conclusion. SD-OCT is essential for the nAMD patients who are on an as-needed treatment regimen with ranibizumab. Only TD-OCT and clinical examination may cause insufficient treatment in this group of patients. 1. Introduction Neovascular age-related macular degeneration (nAMD) is the leading cause of visual loss among the elderly population in developed countries [1, 2]. Before the introduction of intravitreal antivascular endothelial growth factor therapy for nAMD, only prevention for visual loss might have been achieved in a limited number of patients with different treatment options like laser photocoagulation and photodynamic therapy [3–7]. The introduction of bevacizumab (full length antibody against VEGF-A) and ranibizumab (Fab part of antibody against VEGF-A) has led the vast majority of the patients to prevent the baseline visual acuity [8–16]. The pivotal multicenter studies with ranibizumab, like MARINA, ANCHOR, PRONTO, EXCITE, and CATT, showed that ranibizumab is effective to prevent baseline visual acuity in up to 95% of the patients and is effective to make an improvement in visual acuity in up to 40% of the patients [9–13]. Monthly ranibizumab treatment for nAMD was found to be effective in MARINA and ANCHOR studies; however, an attempt then aroused to decrease the injection numbers. Therefore, studies like PRONTO and FUSION were designed to

References

[1]  L.-Y. Ngai, N. Stocks, J. M. Sparrow et al., “The prevalence and analysis of risk factors for age-related macular degeneration: 18-year follow-up data from the Speedwell eye study, United Kingdom,” Eye, vol. 25, no. 6, pp. 784–793, 2011.
[2]  M. Roy and M. Kaiser-Kupfer, “Second eye involvement in age-related macular degeneration: a four-year prospective study,” Eye, vol. 4, no. 6, pp. 813–818, 1990.
[3]  M. Votruba and Z. Gregor, “Neovascular age-related macular degeneration: present and future treatment options,” Eye, vol. 15, no. 3, pp. 424–429, 2001.
[4]  Macular Photocoagulation Study Group, “Laser photocoagulation of subfoveal neovascular lesions in age-related macular degeneration: results of a randomized clinical trial,” Archives of Ophthalmology, vol. 109, no. 9, pp. 1220–1231, 1991.
[5]  L. Akduman, M. P. Karavellas, J. C. Macdonald, R. J. Olk, and W. R. Freeman, “Macular translocation with retinotomy and retinal rotation for exudative age-related macular degeneration,” Retina, vol. 19, no. 5, pp. 418–423, 1999.
[6]  G. S. Rubin and N. M. Bressler, “Effects of verteporfin therapy on contrast on sensitivity: results from the treatment of age-related macular degeneration with photodynamic therapy (TAP) investigation-TAP report No 4,” Retina, vol. 22, no. 35, pp. 536–544, 2002.
[7]  A. ?zkaya, Z. Gürcan, U. Yi?it, ?. Elmasta? Gültekin, and H. M. ?zkaya, “Photodynamic therapy results in age related macular degeneration,” Retina and Vitreous, vol. 4, no. 1, pp. 289–296, 2010.
[8]  J. L. Kovach, S. G. Schwartz, H. W. Flynn Jr., and I. U. Scott, “Anti-VEGF treatment strategies for wet AMD,” Journal of Ophthalmology, vol. 2012, Article ID 786870, 7 pages, 2012.
[9]  D. M. Brown, P. K. Kaiser, M. Michels et al., “Ranibizumab versus verteporfin for neovascular age-related macular degeneration,” The New England Journal of Medicine, vol. 355, no. 14, pp. 1432–1444, 2006.
[10]  P. J. Rosenfeld, D. M. Brown, J. S. Heier et al., “Ranibizumab for neovascular age-related macular degeneration,” The New England Journal of Medicine, vol. 355, no. 14, pp. 1419–1431, 2006.
[11]  G. A. Lalwani, P. J. Rosenfeld, A. E. Fung et al., “A variable-dosing regimen with intravitreal ranibizumab for neovascular age-related macular degeneration: year 2 of the PrONTO study,” American Journal of Ophthalmology, vol. 148, no. 1, pp. 43–58, 2009.
[12]  U. Schmidt-Erfurth, B. Eldem, R. Guymer et al., “Efficacy and safety of monthly versus quarterly ranibizumab treatment in neovascular age-related macular degeneration: the EXCITE study,” Ophthalmology, vol. 118, no. 5, pp. 831–839, 2011.
[13]  D. F. Martin, M. G. Maguire, G. Ying, J. E. Grunwald, S. L. Fine, and G. J. Jaffe, “Ranibizumab and bevacizumab for neovascular age-related macular degeneration,” The New England Journal of Medicine, vol. 364, no. 20, pp. 1897–1908, 2011.
[14]  J. Monés, M. Biarnés, F. Trindade, and R. Casaroli-Marano, “FUSION regimen: ranibizumab in treatment-na?ve patients with exudative age-related macular degeneration and relatively good baseline visual acuity,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 250, no. 12, pp. 1737–1744, 2012.
[15]  I. Zampros, A. Praidou, P. Brazitikos, P. Ekonomidis, and S. Androudi, “Antivascular endothelial growth factor agents for neovascular age-related macular degeneration,” Journal of Ophthalmology, vol. 2012, Article ID 319728, 12 pages, 2012.
[16]  S. M. Hariprasad, L. S. Morse, H. Shapiro, P. Wong, and L. Tuomi, “Fixed monthly versus less frequent ranibizumab dosing and predictors of visual response in exudative age-related macular degeneration,” Journal of Ophthalmology, vol. 2012, Article ID 690641, 8 pages, 2012.
[17]  M. Kakinoki, T. Miyake, O. Sawada, T. Sawada, H. Kawamura, and M. Ohji, “Comparison of macular thickness in diabetic macular edema using spectral-domain optical coherence tomography and time-domain optical coherence tomography,” Journal of Ophthalmology, vol. 2012, Article ID 959721, 5 pages, 2012.
[18]  E. Hatef, A. Khwaja, Z. Rentiya, et al., “Comparison of time domain and spectral domain optical coherence tomography in measurement of macular thickness in macular edema secondary to diabetic retinopathy and retinal vein occlusion,” Journal of Ophthalmology, vol. 2012, Article ID 354783, 9 pages, 2012.
[19]  U. Eriksson, A. Alm, and E. Larsson, “Is quantitative spectral-domain superior to time-domain optical coherence tomography (OCT) in eyes with age-related macular degeneration?” Acta Ophthalmologica, vol. 90, no. 7, pp. 620–627, 2012.
[20]  I. Krebs, S. Hagen, E. Smretschnig, I. Womastek, W. Brannath, and S. Binder, “Conversion of stratus optical coherence tomography (OCT) retinal thickness to cirrus OCT values in age-related macular degeneration,” British Journal of Ophthalmology, vol. 95, no. 11, pp. 1552–1554, 2012.
[21]  D. M. Luviano, M. S. Benz, R. Y. Kim et al., “Selected clinical comparisons of spectral domain and time domain optical coherence tomography,” Ophthalmic Surgery Lasers and Imaging, vol. 40, no. 3, pp. 325–328, 2009.
[22]  G. Querques, R. Forte, E. Berboucha et al., “Spectral-domain versus time domain optical coherence tomography before and after ranibizumab for age-related macular degeneration,” Ophthalmic Research, vol. 46, no. 3, pp. 152–159, 2011.
[23]  C. Cukras, Y. D. Wang, C. B. Meyerle, F. Forooghian, E. Y. Chew, and W. T. Wong, “Optical coherence tomography-based decision making in exudative age-related macular degeneration: comparison of time- vs spectral-domain devices,” Eye, vol. 24, no. 5, pp. 775–783, 2010.
[24]  K. Sayanagi, S. Sharma, T. Yamamoto, and P. K. Kaiser, “'Comparison of spectral-domain versus time-domain optical coherence tomography in management of age-related macular degeneration with ranibizumab,” Ophthalmology, vol. 116, no. 5, pp. 947–955, 2009.
[25]  P. S. Muether, M. M. Hermann, K. Koch, and S. Fauser, “Delay between medical indication to anti-VEGF treatment in age-related macular degeneration can result in a loss of visual acuity,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 249, no. 5, pp. 633–637, 2011.
[26]  L. Arias, F. Armadá, J. Donate et al., “Delay in treating age-related macular degeneration in Spain is associated with progressive vision loss,” Eye, vol. 23, no. 2, pp. 326–333, 2008.
[27]  T. Baba, M. Kitahashi, M. Kubota-Taniai, T. Oshitari, and S. Yamamoto, “Two-year course of subfoveal pigment epithelial detachment in eyes with age-related macular degeneration and visual acuity better than 20/40,” Ophthalmologica, vol. 228, no. 2, pp. 102–109, 2012.
[28]  A. Mariani, A. Deli, A. Ambresin, and I. Mantel, “Characteristics of eyes with secondary loss of visual acuity receiving variable dosing ranibizumab for neovascular age-related macular degeneration,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 249, no. 11, pp. 1635–1642, 2011.
[29]  H. Gerding, V. Loukopoulos, J. Riese, L. Hefner, and M. Timmermann, “Results of flexible ranibizumab treatment in age-related macular degeneration and search for parameters with impact on outcome,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 249, no. 5, pp. 653–662, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133