Purpose. To review the proposed pathogenic mechanisms of age macular degeneration (AMD), as well as the role of antioxidants (AOX) and omega-3 fatty acids (ω-3) supplements in AMD prevention. Materials and Methods. Current knowledge on the cellular/molecular mechanisms of AMD and the epidemiologic/experimental studies on the effects of AOX and ω-3 were addressed all together with the scientific evidence and the personal opinion of professionals involved in the Retina Group of the OFTARED (Spain). Results. High dietary intakes of ω-3 and macular pigments lutein/zeaxanthin are associated with lower risk of prevalence and incidence in AMD. The Age-Related Eye Disease study (AREDS) showed a beneficial effect of high doses of vitamins C, E, beta-carotene, and zinc/copper in reducing the rate of progression to advanced AMD in patients with intermediate AMD or with one-sided late AMD. The AREDS-2 study has shown that lutein and zeaxanthin may substitute beta-carotene because of its potential relationship with increased lung cancer incidence. Conclusion. Research has proved that elder people with poor diets, especially with low AOX and ω-3 micronutrients intake and subsequently having low plasmatic levels, are more prone to developing AMD. Micronutrient supplementation enhances antioxidant defense and healthy eyes and might prevent/retard/modify AMD. 1. Introduction Age-related macular degeneration (AMD) is the most common cause of blindness in the Western world. AMD has a chronic progressive course and may require lifelong observation and therapy, becoming a socioeconomic problem as the proportion of the aged population is continuously increasing [1]. The evidence of extensive decline in quality of life and increased need of daily living assistance after long follow-up of patients with AMD substantiates the need to prevent vision loss and progression to blindness. Important advances in the understanding of AMD pathogenesis have been focused on the role of oxidative damage into the retina [2]. It is clearly established that reactive oxygen species (ROS) and oxidized lipoproteins are pivotal sources of cell and tissue stress constructing adequate background for parainflammation in the aging retina. This chronic situation contributes to the development and/or progression of AMD [3]. Angiogenesis and its downstream effects are important milestones in AMD [4, 5]. Furthermore, increasing evidence supports the fact that OS and apoptosis are closely linked processes and that both are implicated in the pathophysiologic mechanisms of AMD [2, 4, 5]. All these were
References
[1]
G. Soubrane, A. Cruess, A. Lotery et al., “Burden and health care resource utilization in neovascular age-related macular degeneration: findings of a multicountry study,” Archives of Ophthalmology, vol. 125, no. 9, pp. 1249–1254, 2007.
[2]
J. W. Miller, “Age-related macular degeneration revisited—piecing the puzzle: the LXIX Edward Jackson memorial lecture,” The American Journal of Ophthalmology, vol. 155, pp. 1–35, 2013.
[3]
T. Lin, G. B. Walker, K. Kurji et al., “Parainflammation associated with advanced glycation endproduct stimulation of RPE in vitro: implications for age-related degenerative diseases of the eye,” Cytokine, vol. 62, pp. 369–381, 2013.
[4]
A. Swaroop, E. Y. Chew, C. B. Rickman, and G. R. Abecasis, “Unraveling a multifactorial late-onset disease: from genetic susceptibility to disease mechanisms for age-related macular degeneration,” Annual Review of Genomics and Human Genetics, vol. 10, pp. 19–43, 2009.
[5]
T. Aslam, C. Delcourt, R. Silva et al., “Micronutrients in age-related macular degeneration,” Ophthalmologica, vol. 229, pp. 75–79, 2012.
[6]
Age-Related Eye Disease Study Research Group, “A randomized, placebo-controled clinical trial of high-dose supplementation with vitamins C and E, beta carotene and zinc for age-related macular degeneration and visual loss: AREDS report 8,” Archives of Ophthalmology, vol. 119, pp. 1417–1436, 2001.
[7]
Age-Related Eye Disease Study 2 Research Group, “Lutein + zeaxanthin and omega-3 fatty acids for age-related macular degeneration: the Age-Related Eye Disease Study 2 (AREDS2) randomized clinical trial,” The Journal of the American Medical Association, vol. 309, pp. 2005–2015, 2013.
[8]
I. Fridovich, “The biology of oxygen radicals. The superoxide radical is an agent of oxygen toxicity: superoxide dismutases provide an important defense,” Science, vol. 201, no. 4359, pp. 875–880, 1978.
[9]
B. Halliwell, “Free radicals and antioxidants: updating a personal view,” Nutrition Reviews, vol. 70, no. 5, pp. 257–265, 2012.
[10]
W. A. Pryor, “Free radicals and lipid peroxidation: what they are and how theygot that way,” in Natural Antioxidants in Human Health and Disease, B. Frei, Ed., pp. 1–24, Academic Press, San Diego, Calif, USA, 1994.
[11]
N. Acar, S. Gregoire, A. Andre et al., “Plasmalogens in the retina: in situ hybridization of dihydroxyacetone phosphate acyltransferase (DHAP-AT)—the first enzyme involved in their biosynthesis—and comparative study of retinal and retinal pigment epithelial lipid composition,” Experimental Eye Research, vol. 84, no. 1, pp. 143–151, 2007.
[12]
N. Acar, O. Berdeaux, S. Grégoire et al., “Lipid composition of the human eye: are red blood cells a good mirror of retinal and optic nerve fatty acids?” PLoS ONE, vol. 7, no. 4, Article ID e35102, 2012.
[13]
R. T. Holman, L. Smythe, and S. Johnson, “Effect of sex and age on fatty acid composition of human serum lipids,” The American Journal of Clinical Nutrition, vol. 32, no. 12, pp. 2390–2399, 1979.
[14]
J. C. Khan, H. Shahid, D. A. Thurlby et al., “Age related macular degeneration and sun exposure, iris colour, and skin sensitivity to sunlight,” The British Journal of Ophthalmology, vol. 90, no. 1, pp. 29–32, 2006.
[15]
W. Smith, J. Assink, R. Klein et al., “Risk factors for age-related macular degeneration: pooled findings from three continents,” Ophthalmology, vol. 108, no. 4, pp. 697–704, 2001.
[16]
R. Klein, B. E. Klein, S. C. Jensen, J. A. Mares-Perlman, K. J. Cruickshanks, and M. Palta, “Age-related maculopathy in a multiracial United States population: the National Health and Nutrition Examination Survey III,” Ophthalmology, vol. 106, no. 6, pp. 1056–1065, 1999.
[17]
R. Varma, S. Fraser-Bell, S. Tan, R. Klein, S. P. Azen, and Los Angeles Latino Eye Study Group, “Prevalence of age-related macular degeneration in Latinos: the Los Angeles Latino eye study,” Ophthalmology, vol. 111, no. 7, pp. 1288–1297, 2004.
[18]
M. A. Zarbin, “Current concepts in the pathogenesis of age-related macular degeneration,” Archives of Ophthalmology, vol. 122, no. 4, pp. 598–614, 2004.
[19]
N. I. Krinsky, J. T. Landrum, and R. A. Bone, “Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye,” Annual Review of Nutrition, vol. 23, pp. 171–201, 2003.
[20]
D. Pauleikhoff, F. J. van Kuijk, and A. C. Bird, “Macular pigment and age-related macular degeneration,” Ophthalmologe, vol. 98, no. 6, pp. 511–519, 2001.
[21]
J. Wu, S. Seregard, and P. V. Algvere, “Photochemical damage of the retina,” Survey of Ophthalmology, vol. 51, no. 5, pp. 461–481, 2006.
[22]
P. V. Algvere, J. Marshall, and S. Seregard, “Age-related maculopathy and the impact of blue light hazard,” Acta Ophthalmologica Scandinavica, vol. 84, no. 1, pp. 4–15, 2006.
[23]
T. H. Margrain, M. Boulton, J. Marshall, and D. H. Sliney, “Do blue light filters confer protection against age-related macular degeneration?” Progress in Retinal and Eye Research, vol. 23, no. 5, pp. 523–531, 2004.
[24]
R. Klein, B. E. Klein, S. C. Jensen, and K. J. Cruickshanks, “Sunlight and the 5-year incidence of early age-related maculopathy: the Beaver Dam Eye Study,” Archives of Ophthalmology, vol. 119, pp. 246–250, 2001.
[25]
L. Biasutto, A. Chiechi, R. Couch, L. A. Liotta, and V. Espina, “The RPE exosomes contain signaling phosphoproteins affected by oxidative stress,” Experimental Cell Research, vol. 119, pp. 2113–2123, 2013.
[26]
S. Beatty, H. Koh, M. Phil, D. Henson, and M. Boulton, “The role of oxidative stress in the pathogenesis of age-related macular degeneration,” Survey of Ophthalmology, vol. 45, no. 2, pp. 115–134, 2000.
[27]
P. C. Calder, “Polyunsaturated fatty acids, inflammation, and immunity,” Lipids, vol. 36, no. 9, pp. 1007–1024, 2001.
[28]
P. K. Mukherjee, V. L. Marcheselli, J. C. de Rivero Vaccari, W. C. Gordon, F. E. Jackson, and N. G. Bazan, “Photoreceptor outer segment phagocytosis attenuates oxidative stress-induced apoptosis with concomitant neuroprotectin D1 synthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 32, pp. 13158–13163, 2007.
[29]
M. D. Pinazo-Durán and L. Boscá-Gomar, “Anti-inflammatory properties of polyunsaturated fatty acid omega 3,” Indications in Ophthalmology, vol. 87, pp. 203–205, 2012.
[30]
J. Blasiak, S. Glowacki, A. Kauppinen, and K. Kaarniranta, “Mitochondrial and nuclear DNA damage and repair in age-related macular degeneration,” International Journal of Molecular, vol. 14, no. 2, pp. 2996–3010, 2013.
[31]
E. Synowiec, T. Sliwinski, K. Danisz et al., “Association between polymorphism of the NQO1, NOS3 and NFE2L2 genes and AMD,” Frontiers in Bioscience, vol. 18, pp. 80–90, 2013.
[32]
M. C. Kenney, D. Hertzog, G. Chak et al., “Mitochondrial DNA haplogroups confer differences in risk for age-related macular degeneration: a case control study,” BMC Medical Genetics, vol. 14, article 4, 2013.
[33]
T. U. Krohne, N. K. Stratmann, J. Kopitz, and F. G. Holz, “Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells,” Experimental Eye Research, vol. 90, no. 3, pp. 465–471, 2010.
[34]
M. D. Pinazo-Durán, V. Zanón-Moreno, J. J. García-Medina, and R. Gallego-Pinazo, “Evaluation of presumptive biomarkers of oxidative stress, immune response and apoptosis in primary open-angle glaucoma,” Current Opinion in Pharmacology, vol. 13, pp. 98–107, 2013.
[35]
R. D?nulescu and D. Costin, “Use of blood markers in early diagnosis of oxidative stress in age related macular degeneration,” Revista Medico-Chirurgicala a Societatii de Medici si Naturalisti din Iasi, vol. 116, no. 4, pp. 1136–1142, 2012.
[36]
J. Yao, X. Liu, Q. Yang et al., “Proteomic analysis of the aqueous humor in patients with wet age-related macular degeneration,” Proteomics Clinical Applications, vol. 7, no. 550, pp. 7–860, 2013.
[37]
R. T. Libby and D. B. Gould, “Endoplasmic reticulum stress as a primary pathogenic mechanism leading to age-related macular degeneration,” Advances in Experimental Medicine and Biology, vol. 664, pp. 403–409, 2010.
[38]
G. Rodríguez Diez, S. Sánchez Campos, N. M. Giusto, and G. A. Salvador, “Specific roles for Group V secretory PLA2 in retinal iron-induced oxidative stress. Implications for age-related macular degeneration,” Experimental Eye Research, vol. 113, pp. 172–181, 2013.
[39]
V. Nikoletopoulou, M. Markaki, K. Palikaras, and N. Tavernarakis, “Crosstalk between apoptosis, necrosis and autophagy,” Biochimica et Biophysica Acta, vol. 1833, no. 12, pp. 3448–3459, 2013.
[40]
D. D'Amours, F. R. Sallmann, V. M. Dixit, and G. G. Poirier, “Gain-of-function of poly(ADP-ribose) polymerase-1 upon cleavage by apoptotic proteases: implications for apoptosis,” Journal of Cell Science, vol. 114, no. 20, pp. 3771–3778, 2001.
[41]
J. H. Distler, T. Strapatsas, D. Huscher et al., “Dysbalance of angiogenic and angiostatic mediators in patients with mixed connective tissue disease,” Annals of the Rheumatic Diseases, vol. 70, no. 7, pp. 1197–1202, 2011.
[42]
P. K. Kaiser, “Emerging therapies for neovascular age-related macular degeneration: drugs in the pipeline,” Ophthalmology, vol. 120, no. 5, Supplement, pp. S11–S15, 2013.
[43]
S. Rezzola, M. Belleri, D. Ribatti, C. Costagliola, M. Presta, and F. Semeraro, “A novel ex vivo murine retina angiogenesis (EMRA) assay,” Experimental Eye Research, vol. 112, pp. 51–56, 2013.
[44]
R. Seki, S. Yamagishi, T. Matsui et al., “Pigment epithelium-derived factor (PEDF) inhibits survival and proliferation of VEGF-exposed multiple myeloma cells through its anti-oxidative properties,” Biochemical and Biophysical Research Communications, vol. 431, pp. 693–697, 2013.
[45]
A. Stahl, M. T. Stumpp, A. Schlegel et al., “Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications,” Angiogenesis, vol. 16, pp. 101–111, 2013.
[46]
S. Nakao, M. Arima, K. Ishikawa et al., “Intravitreal anti-VEGF therapy blocks inflammatory cell infiltration and re-entry into the circulation in retinal angiogenesis,” Investigative Ophthalmology & Visual Science, vol. 53, pp. 4323–4328, 2012.
[47]
I. A. Bhutto, D. S. McLeod, T. Hasegawa et al., “Pigment epithelium-derived factor (PEDF) and vascular endothelial growth factor (VEGF) in aged human choroid and eyes with age-related macular degeneration,” Experimental Eye Research, vol. 82, no. 1, pp. 99–110, 2006.
[48]
J. A. Stefater III, I. Lewkowich, S. Rao et al., “Regulation of angiogenesis by a non-canonical Wnt-Flt1 pathway in myeloid cells,” Nature, vol. 474, no. 7352, pp. 511–515, 2011.
[49]
A. Klettner, A. Kauppinen, J. Blasiak, J. Roider, A. Salminen, and K. Kaarniranta, “Cellular and molecular mechanisms of age-related macular degeneration: from impaired autophagy to neovascularization,” The International Journal of Biochemistry & Cell Biology, vol. 45, pp. 1457–1467, 2013.
[50]
W. M. Haddad, G. Coscas, and G. Soubrane, “Age-related macular degeneration and apoptosis,” Journal Francais d'Ophtalmologie, vol. 26, no. 3, pp. 307–311, 2003.
[51]
J. L. Dunaief, T. Dentchev, G. S. Ying, and A. H. Milam, “The role of apoptosis in age-related macular degeneration,” Archives of Ophthalmology, vol. 120, no. 11, pp. 1435–1442, 2002.
[52]
N. Liadis, K. Murakami, M. Eweida et al., “Caspase-3-dependent β-cell apoptosis in the initiation of autoimmune diabetes mellitus,” Molecular and Cellular Biology, vol. 25, no. 9, pp. 3620–3629, 2005.
[53]
J. M. Matés, “Effects of antioxidant enzymes in the molecular control of reactive oxygen species toxicology,” Toxicology, vol. 153, no. 1–3, pp. 83–104, 2000.
[54]
L. M. Sadaba, P. Fernandez-Robredo, J. A. Rodríguez, and A. García-Layana, “Antioxidant effects of vitamins C and E, multivitamin-mineral complex and flavonoids in a model of retinal oxidative stress: the ApoE-deficient mouse,” Experimental Eye Research, vol. 86, no. 3, pp. 470–479, 2008.
[55]
I. Jialal, S. Devaraj, and N. Kaul, “The effect of α-Tocopherol on monocyte proatherogenic activity,” Journal of Nutrition, vol. 131, pp. 389S–394S, 2001.
[56]
D. Zhang, M. Al-Hendy, G. Richard-Davis, V. Montgomery-Rice, V. Rajaratnam, and A. Al-Hendy, “Antiproliferative and proapoptotic effects of epigallocatechin gallate on human leiomyoma cells,” Fertility and Sterility, vol. 94, no. 5, pp. 1887–1893, 2010.
[57]
Z. Ungvari, Z. Orosz, A. Rivera, N. Labinskyy, Z. Xiangmin, and A. Csiszae, “Resveratrol increases vascular oxidative stress resistance,” The FASEB Journal, vol. 21, p. 576.2, 2007.
[58]
R. Medzhitov and C. Janeway Jr., “Innate immunity,” The New England Journal of Medicine, vol. 343, no. 5, pp. 338–344, 2000.
[59]
S. Cao, G. B. Walker, X. Wang, J. Z. Cui, and J. A. Matsubara, “Altered cytokine profiles of human retinal pigment epithelium: oxidant injury and replicative senescence,” Molecular Vision, vol. 19, pp. 718–728, 2013.
[60]
F. Parmeggiani, D. Gemmati, C. Costagliola, A. Sebastiani, and C. Incorvaia, “Predictive role of C677T MTHFR polymorphism in variable efficacy of photodynamic therapy for neovascular age-related macular degeneration,” Pharmacogenomics, vol. 10, no. 1, pp. 81–95, 2009.
[61]
F. Cruz-Guilloty, A. M. Saeed, J. J. Echegaray et al., “Infiltration of proinflammatory m1 macrophages into the outer retina precedes damage in a mouse model of age-related macular degeneration,” International Journal of Inflammation, vol. 2013, Article ID 503725, 12 pages, 2013.
[62]
R. P. Casaroli-Marano, J. Peinado-Onsurbe, M. Reina, B. Staels, J. Auwerx, and S. Vilaró, “Lipoprotein lipase in highly vascularized structures of the eye,” Journal of Lipid Research, vol. 37, no. 5, pp. 1037–1044, 1996.
[63]
D. H. Anderson, K. C. Talaga, A. J. Rivest, E. Barron, G. S. Hageman, and L. V. Johnson, “Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration,” Experimental Eye Research, vol. 78, no. 2, pp. 243–256, 2004.
[64]
G. S. Hageman, P. J. Luthert, N. H. V. Chong, L. V. Johnson, D. H. Anderson, and R. F. Mullins, “An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch's membrane interface in aging and age-related macular degeneration,” Progress in Retinal and Eye Research, vol. 20, no. 6, pp. 705–732, 2001.
[65]
J. J. Alexander, L. Bao, A. Jacob, D. M. Kraus, V. M. Holers, and R. J. Quigg, “Administration of the soluble complement inhibitor, Crry-Ig, reduces inflammation and aquaporin 4 expression in lupus cerebritis,” Biochimica et Biophysica Acta, vol. 1639, no. 3, pp. 169–176, 2003.
[66]
D. A. Newsome, M. Swartz, N. C. Leone, R. C. Elston, and E. Miller, “Oral zinc in macular degeneration,” Archives of Ophthalmology, vol. 106, no. 2, pp. 192–198, 1988.
[67]
S. Richer, W. Stiles, L. Statkute et al., “Double-masked, placebo-controlled, randomized trial of lutein and antioxidant supplementation in the intervention of atrophic age-related macular degeneration: the Veterans LAST study (Lutein Antioxidant Supplementation Trial),” Optometry, vol. 75, no. 4, pp. 216–230, 2004.
[68]
M. Stur, M. Tittl, A. Reitner, and V. Meisinger, “Oral zinc and the second eye in age-related macular degeneration,” Investigative Ophthalmology and Visual Science, vol. 37, no. 7, pp. 1225–1235, 1996.
[69]
D. A. Newsome, “A randomized, prospective, placebo-controlled clinical trial of a novel zinc-monocysteine compound in age-related macular degeneration,” Current Eye Research, vol. 33, no. 7, pp. 591–598, 2008.
[70]
S. Richer, “Multicenter ophthalmic and nutritional age-related macular degeneration study—part 2: antioxidant intervention and conclusions,” Journal of the American Optometric Association, vol. 67, no. 1, pp. 30–49, 1996.
[71]
J. Feher, B. Kovacs, I. Kovacs, M. Schvoller, A. Papale, and C. B. Gabrieli, “Improvement of visual functions and fundus alterations in early age-related macular degeneration treated with a combination of acetyl-L-carnitine, n-3 fatty acids, and coenzyme Q10,” Ophthalmologica, vol. 219, no. 3, pp. 154–166, 2005.
[72]
E. W. Chong, A. J. Kreis, T. Y. Wong, J. A. Simpson, and R. H. Guymer, “Dietary ω-3 fatty acid and fish intake in the primary prevention of age-related macular degeneration: a systematic review and meta-analysis,” Archives of Ophthalmology, vol. 126, no. 6, pp. 826–833, 2008.
[73]
W. G. Christen, D. A. Schaumberg, R. J. Glynn, and J. E. Buring, “Dietary ω-3 fatty acid and fish intake and incident age-related macular degeneration in women,” Archives of Ophthalmology, vol. 129, no. 7, pp. 921–929, 2011.
[74]
R. van Leeuwen, S. Boekhoorn, J. R. Vingerling et al., “Dietary intake of antioxidants and risk of age-related macular degeneration,” The Journal of the American Medical Association, vol. 294, no. 24, pp. 3101–3107, 2005.
[75]
V. Flood, W. Smith, J. J. Wang, F. Manzi, K. Webb, and P. Mitchell, “Dietary antioxidant intake and incidence of early age-related maculopathy: the Blue Mountains Eye Study,” Ophthalmology, vol. 109, no. 12, pp. 2272–2278, 2002.
[76]
E. Chow, J. M. Seddon, B. Rosner, W. C. Willett, and S. E. Hankinson, “Prospective study of intake of fruits, vegetables, vitamins, and carotenoids and risk of age-related maculopathy,” Archives of Ophthalmology, vol. 122, no. 6, pp. 883–892, 2004.
[77]
G. M. van den Langenberg, J. A. Mares-Perlman, R. Klein, B. E. K. Klein, W. E. Brady, and M. Palta, “Associations between antioxidant and zinc intake and the 5-year incidence of early age-related maculopathy in the beaver dam eye study,” The American Journal of Epidemiology, vol. 148, no. 2, pp. 204–214, 1998.
[78]
M. S. Moeller, N. Parekh, L. L. Tinker, et al., “Associations between intermediate age-related macular degeneration and lutein and zeaxanthin in the Carotenoids in Age-Related Eye Disease Study (CAREDS): ancillary study of the Women's Health Initiative,” Archives of Ophthalmology, vol. 124, no. 8, pp. 1151–1162, 2006.
[79]
H. Taylor, G. Tikellis, L. Robman, et al., “Vitamin E supplementation and macular degeneration: randomised controlled trial,” British Medical Journal, vol. 325, no. 7354, pp. 11–14, 2002.
[80]
W. G. Hodge, H. M. Schachter, D. Barnes et al., “Efficacy of ω-3 fatty acids in preventing age-related macular degeneration: a systematic review,” Ophthalmology, vol. 113, no. 7, pp. 1165–1173, 2006.
[81]
E. W. Chong, T. Y. Wong, A. J. Kreis, J. A. Simpson, and R. H. Guymer, “Dietary antioxidants and primary prevention of age related macular degeneration: systematic review and meta-analysis,” The British Medical Journal, vol. 335, no. 7623, pp. 755–759, 2007.
[82]
E. H. Soused, C. Delcourt, G. Querques et al., “Nutritional AMD treatment 2 study group. Oral docosahexaenoic acid in the prevention of exudative age-related macular degeneration: the nutritional AMD treatment 2 study,” Ophthalmology, vol. 120, no. 8, pp. 1619–1631, 2013.
[83]
J. M. Teikari, L. Laatikainen, J. Virtamo et al., “Six-year supplementation with alpha-tocopherol and beta-carotene and age-related maculopathy,” Acta Ophthalmologica Scandinavica, vol. 76, no. 2, pp. 224–229, 1998.
[84]
O. P. Heinonen, J. K. Huttunen, D. Albanes et al., “The alpha-tocopherol, beta-carotene lung cancer prevention study: design, methods, participant characteristics, and compliance. The ATBC Cancer Prevention Study Group,” Annals of Epidemiology, vol. 4, no. 1, pp. 1–10, 1994.
[85]
G. E. Goodman, G. S. Omenn, M. D. Thornquist, B. Lund, B. Metch, and I. Gylys-Colwell, “The Carotene and Retinol Efficacy Trial (CARET) to prevent lung cancer in high-risk populations: pilot study with cigarette smokers,” Cancer Epidemiology Biomarkers and Prevention, vol. 2, no. 4, pp. 389–396, 1993.
[86]
G. S. Omenn, G. E. Goodman, M. D. Thornquist et al., “Effects of a combination of beta carotene and vitamin A on lung cancer and cardiovascular disease,” The New England Journal of Medicine, vol. 334, no. 18, pp. 1150–1155, 1996.
[87]
J. S. Tan, J. J. Wang, V. Flood, E. Rochtchina, W. Smith, and P. Mitchell, “Dietary antioxidants and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study,” Ophthalmology, vol. 115, no. 2, pp. 334–341, 2008.
[88]
J. H. Olson, J. C. Erie, and S. J. Bakri, “Nutritional supplementation and age-related macular degeneration,” Seminars in Ophthalmology, vol. 26, no. 3, pp. 131–136, 2011.
[89]
Food and Nutrition Board, Institute of Medicine, “Copper,” in Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, pp. 224–257, National Academy Press, Washington, DC, USA, 2001.
[90]
Z. B. Kang, Y. Ge, Z. Chen et al., “Adenoviral gene transfer of Caenorhabditis elegans n-3 fatty acid desaturase optimizes fatty acid composition in mammalian cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 7, pp. 4050–4054, 2001.
[91]
M. E. Pennesi, M. Neuringer, and R. J. Courtney, “Animal models of age related macular degeneration,” Molecular Aspects of Medicine, vol. 33, pp. 487–509, 2012.
[92]
T. Koto, N. Nagai, H. Mochimaru, et al., “Eicosapentaenoic acid is anti-inflammatory in preventing choroidal neovascularization in mice,” Investigative Ophthalmology & Visual Science, vol. 48, no. 9, pp. 4328–4334, 2007.
[93]
J. Tuo, C. M. Bojanowski, M. Zhou et al., “Murine Ccl2/Cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration,” Investigative Ophthalmology and Visual Science, vol. 48, no. 8, pp. 3827–3836, 2007.
[94]
C. C. Chan, R. J. Ross, D. Shen et al., “Ccl2/Cx3cr1-deficient mice: an animal model for age-related macular degeneration,” Ophthalmic Research, vol. 40, no. 3-4, pp. 124–128, 2008.
[95]
J. Tuo, R. J. Ross, A. A. Herzlich et al., “A high omega-3 fatty acid diet reduces retinal lesions in a murine model of macular degeneration,” The American Journal of Pathology, vol. 175, no. 2, pp. 799–807, 2009.
[96]
R. W. Bellhorn, C. D. King, G. D. Aguirre, H. Ripps, I. M. Siegel, and H. C. Tsai, “Pigmentary abnormalities of the macula in rhesus monkeys: clinical observations,” Investigative Ophthalmology and Visual Science, vol. 21, no. 6, pp. 771–781, 1981.
[97]
T. J. Stafford, S. H. Anness, and B. S. Fine, “Spontaneous degenerative maculopathy in the monkey,” Ophthalmology, vol. 91, no. 5, pp. 513–521, 1984.
[98]
M. G. Nicolas, K. Fujiki, K. Murayama et al., “Studies on the mechanism of early onset macular degeneration in cynomolgus (Macaca fascicularis) monkeys. I. Abnormal concentrations of two proteins in the retina,” Experimental Eye Research, vol. 62, no. 3, pp. 211–219, 1996.
[99]
S. Umeda, M. T. Suzuki, H. Okamoto et al., “Molecular composition of drusen and possible involvement of anti-retinal autoimmunity in two different forms of macular degeneration in cynomolgus monkey (Macaca fascicularis),” The FASEB Journal, vol. 19, no. 12, pp. 1683–1685, 2005.
[100]
M. Neuringer, P. J. Francis, L. Renner, A. Weiss, and B. G. Jeffrey, “Atrophic macular degeneration in rhesus monkeys deficient in xanthophylls and n-3 fatty acids,” ARVO Abstract, Association for Research in Vision and Ophthalmology, 2010.
[101]
P. Gouras, L. Ivert, M. Neuringer, and J. A. Mattison, “Topographic and age-related changes of the retinal epithelium and Bruch's membrane of rhesus monkeys,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 248, no. 7, pp. 973–984, 2010.
[102]
L. Renner, S. Hurst, T. McGill et al., “Progression of atrophic macular degeneration in rhesus monkeys deficient in lutein/zeaxanthin and omega-3 fatty acids,” ARVO Abstract, Association for Research in Vision and Ophthalmology, 2013.
[103]
F. M. Barker II, D. M. Snodderly, E. J. Johnson et al., “Nutritional manipulation of primate retinas. V: effects of lutein, zeaxanthin, and n-3 fatty acids on retinal sensitivity to blue-light-induced damage,” Investigative Ophthalmology & Visual Science, vol. 52, pp. 3934–3942, 2011.
[104]
T. Tsuzuki, A. Shibata, Y. Kawakami, K. Nakagawa, and T. Miyazawa, “Conjugated eicosapentaenoic acid inhibits vascular endothelial growth factor-induced angiogenesis by suppressing the migration of human umbilical vein endothelial cells,” Journal of Nutrition, vol. 137, no. 3, pp. 641–646, 2007.
[105]
N. Papadopoulos, J. Martin, Q. Ruan et al., “Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab,” Angiogenesis, vol. 15, pp. 171–185, 2012.
[106]
D. Richard, K. Kefi, U. Barbe, P. Bausero, and F. Visioli, “Polyunsaturated fatty acids as antioxidants,” Journal of Regenerative Medicine and Tissue Engineering, vol. 2, pp. 383–393, 2008.
[107]
E. Banumathi, R. Haribalaganesh, S. S. P. Babu, N. S. Kumar, and G. Sangiliyandi, “High-yielding enzymatic method for isolation and culture of microvascular endothelial cells from bovine retinal blood vessels,” Microvascular Research, vol. 77, no. 3, pp. 377–381, 2009.
[108]
S. Sheikpranbabu, R. Haribalaganesh, E. Banumathi, N. Sirishkumar, K. J. Lee, and S. Gurunathan, “Pigment epithelium-derived factor inhibits advanced glycation end-product-induced angiogenesis and stimulates apoptosis in retinal endothelial cells,” Life Sciences, vol. 85, pp. 719–731, 2009.
[109]
I. Morita, Y. W. Zhang, and S. I. Murota, “Eicosapentaenoic acid protects endothelial cell function injured by hypoxia/reoxygenation,” Annals of the New York Academy of Sciences, vol. 947, pp. 394–397, 2001.
[110]
P. K. Mukherjee, V. L. Marcheselli, C. N. Serhan, and N. G. Bazan, “Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 22, pp. 8491–8496, 2004.
[111]
A. J. Chucair, N. P. Rotstein, J. P. Sangiovanni, A. During, E. Y. Chew, and L. E. Politi, “Lutein and zeaxanthin protect photoreceptors from apoptosis induced by oxidative stress: relation with docosahexaenoic acid,” Investigative Ophthalmology and Visual Science, vol. 48, no. 11, pp. 5168–5177, 2007.
[112]
R. Kannan, N. Zhang, P. G. Sreekumar et al., “Stimulation of apical and basolateral vascular endothelial growth factor-A and vascular endothelial growth factor-C secretion by oxidative stress in polarized retinal pigment epithelial cells,” Molecular Vision, vol. 12, pp. 1649–1659, 2006.
[113]
D. B. Kagan, H. Liu, and C. M. Hutnik, “Efficacy of various antioxidants in the protection of the retinal pigment epithelium from oxidative stress,” Clinical Ophthalmology, vol. 6, pp. 1471–1476, 2012.
[114]
J. Evans, “Antioxidant supplements to prevent or slow down the progression of AMD: a systematic review and meta-analysis,” Eye, vol. 22, no. 6, pp. 751–760, 2008.
[115]
A. Sujak, J. Gabrielska, W. Grudziński, R. Borc, P. Mazurek, and W. I. Gruszecki, “Lutein and zeaxanthin as protectors of lipid membranes against oxidative damage: the structural aspects,” Archives of Biochemistry and Biophysics, vol. 371, no. 2, pp. 301–307, 1999.