全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Multiple Myeloma Macrophages: Pivotal Players in the Tumor Microenvironment

DOI: 10.1155/2013/183602

Full-Text   Cite this paper   Add to My Lib

Abstract:

Tumor microenvironment is essential for multiple myeloma (MM) growth, progression, and drug resistance through provision of survival signals and secretion of growth and proangiogenic factors. This paper examines the importance of macrophages within MM bone marrow (BM) microenvironment, referred to as MM-associated macrophages, as a potential niche component that supports tumor plasma cells. These macrophages are derived from peripheral blood monocytes recruited into the tumor. Upon activation by MM plasma cells and mesenchymal stromal cells, macrophages can release growth factors, proteolytic enzymes, cytokines, and inflammatory mediators that promote plasma cell growth and survival. Macrophages promote tumor progression through several mechanisms including angiogenesis, growth, and drug resistance. Indeed, these macrophages are essential for the induction of an angiogenic response through vasculogenic mimicry, and this ability proceeds in step with progression of the plasma cell tumors. Data suggest that macrophages play an important role in the biology and survival of patients with MM, and they may be a target for the MM antivascular management. 1. Tumor-Associated Macrophages In the past decades, the major focus of cancer research has been the malignant cell itself. In haematological malignancies, including multiple myeloma (MM), this has led to the identification of molecular alterations affecting growth control and apoptotic pathways [1]. Recent studies add yet another facet to the complex multistep model of tumorigenesis by demonstrating that tumor cells carrying genomic and epigenomic abnormalities also trigger changes in their microenvironment [2]. Indeed, accumulating evidence supports the hypothesis that the tumor microenvironment or “niche” ultimately determines the clinical behavior of the disease and has direct impact on overall prognosis [3]. MM is characterized by the accumulation of monoclonal plasma cells in the bone marrow (BM) where they grow and expand. This suggests the importance of the BM microenvironment in supporting MM cell growth and survival [4]. The roles of BM stromal cells in supporting MM plasma cells have been extensively studied. The interaction between plasma cells and stromal cells confers plasma cell homing, growth, survival, and resistance to chemotherapy [5]. Among stromal cells, the inflammatory cells play an indispensable role in disease progression [6]. Within the tumor stroma, the macrophage is the pivotal member of inflammatory cells. Tumor-associated macrophages (TAMs), which constitute a significant part of

References

[1]  N. G. Kastrinakis, V. G. Gorgoulis, P. G. Foukas, M. A. Dimopoulos, and C. Kittas, “Molecular aspects of multiple myeloma,” Annals of Oncology, vol. 11, no. 10, pp. 1217–1228, 2000.
[2]  M. J. Bissell and W. C. Hines, “Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression,” Nature Medicine, vol. 17, no. 3, pp. 320–329, 2011.
[3]  W. S. Dalton, L. Hazlehurst, K. Shain, T. Landowski, and M. Alsina, “Targeting the bone marrow microenvironment in hematologic malignancies,” Seminars in Hematology, vol. 41, no. 2, supplement 4, pp. 1–5, 2004.
[4]  R. A. Kyle and S. V. Rajkumar, “Multiple myeloma,” The New England Journal of Medicine, vol. 351, no. 18, pp. 1860–1873, 2004.
[5]  W. S. Dalton, “The tumor microenvironment: focus on myeloma,” Cancer Treatment Reviews, vol. 29, supplement 1, pp. 11–19, 2003.
[6]  L. M. Coussens and Z. Werb, “Inflammation and cancer,” Nature, vol. 420, no. 6917, pp. 860–867, 2002.
[7]  J. W. Pollard, “Tumour-educated macrophages promote tumour progression and metastasis,” Nature Reviews Cancer, vol. 4, no. 1, pp. 71–78, 2004.
[8]  C. Scavelli, B. Nico, T. Cirulli et al., “Vasculogenic mimicry by bone marrow macrophages in patients with multiple myeloma,” Oncogene, vol. 27, no. 5, pp. 663–674, 2008.
[9]  R. L. Gendron, F. Y. Tsai, H. Paradis, and R. J. Arceci, “Induction of embryonic vasculogenesis by bFGF and LIF in vitro and in vivo,” Developmental Biology, vol. 177, no. 1, pp. 332–346, 1996.
[10]  F. O. Martinez, L. Helming, and S. Gordon, “Alternative activation of macrophages: an immunologic functional perspective,” Annual Review of Immunology, vol. 27, pp. 451–483, 2009.
[11]  A. Mantovani, A. Sica, and M. Locati, “New vistas on macrophage differentiation and activation,” European Journal of Immunology, vol. 37, no. 1, pp. 14–16, 2007.
[12]  A. Mantovani, A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati, “The chemokine system in diverse forms of macrophage activation and polarization,” Trends in Immunology, vol. 25, no. 12, pp. 677–686, 2004.
[13]  J. Condeelis and J. W. Pollard, “Macrophages: obligate partners for tumor cell migration, invasion, and metastasis,” Cell, vol. 124, no. 2, pp. 263–266, 2006.
[14]  A. Mantovani, P. Allavena, and A. Sica, “Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression,” European Journal of Cancer, vol. 40, no. 11, pp. 1660–1667, 2004.
[15]  C. D. Mills, K. Kincaid, J. M. Alt, M. J. Heilman, and A. M. Hill, “M-1/M-2 macrophages and the Th1/Th2 paradigm,” Journal of Immunology, vol. 164, no. 12, pp. 6166–6173, 2000.
[16]  D. Ribatti, B. Nico, and A. Vacca, “Importance of the bone marrow microenvironment in inducing the angiogenic response in multiple myeloma,” Oncogene, vol. 25, no. 31, pp. 4257–4266, 2006.
[17]  D. C. Jenkins, I. G. Charles, L. L. Thomsen, et al., “Roles of nitric oxide in tumor growth,” Proceedings of the National Academy of Sciences of the United States of America, vol. 92, no. 10, pp. 4392–4396, 1995.
[18]  A. Vacca, D. Ribatti, M. Presta et al., “Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma,” Blood, vol. 93, no. 9, pp. 3064–3073, 1999.
[19]  F. Di Raimondo, M. P. Azzaro, G. A. Palumbo et al., “Angiogenic factors in multiple myeloma: higher levels in bone marrow than in peripheral blood,” Haematologica, vol. 85, no. 8, pp. 800–805, 2000.
[20]  Y. Zheng, Z. Cai, S. Wang et al., “Macrophages are an abundant component of myeloma microenvironment and protect myeloma cells from chemotherapy drug-induced apoptosis,” Blood, vol. 114, no. 17, pp. 3625–3628, 2009.
[21]  J. Kim, R. A. Denu, B. A. Dollar, et al., “Macrophages and mesenchymal stromal cells support survival and proliferation of multiple myeloma cells,” British Journal of Haematology, vol. 158, no. 3, pp. 336–346, 2012.
[22]  Z. J. Gu, V. Costes, Z. Y. Lu, et al., “Interleukin-10 is a growth factor for human myeloma cells by induction of an oncostatin M autocrine loop,” Blood, vol. 88, no. 10, pp. 3972–3986, 1996.
[23]  S. Li, X. Zhang, and X. Xia, “Regression of tumor growth and induction of long-term antitumor memory by interleukin 12 electro-gene therapy,” Journal of the National Cancer Institute, vol. 94, no. 10, pp. 762–768, 2002.
[24]  A. M. Roccaro, T. Hideshima, N. Raje et al., “Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells,” Cancer Research, vol. 66, no. 1, pp. 184–191, 2006.
[25]  H. Mayer, H. Bertram, W. Lindenmaier, T. Korff, H. Weber, and H. Weich, “Vascular endothelial growth factor (VEGF-A) expression in human mesenchymal stem cells: autocrine and paracrine role on osteoblastic and endothelial differentiation,” Journal of Cellular Biochemistry, vol. 95, no. 4, pp. 827–839, 2005.
[26]  J. P. Laurila, L. Laatikainen, M. D. Castellone et al., “Human embryonic stem cell-derived mesenchymal stromal cell transplantation in a rat hind limb injury model,” Cytotherapy, vol. 11, no. 6, pp. 726–737, 2009.
[27]  A. Vacca, R. Ria, F. Semeraro, et al., “Endothelial cells in the bone marrow of patients with multiple myeloma,” Blood, vol. 102, no. 9, pp. 3340–3348, 2003.
[28]  M. Anghelina, L. Moldovan, T. Zabuawala, M. C. Ostrowski, and N. I. Moldovan, “A subpopulation of peritoneal macrophages form capillary-like lumens and branching patterns in vitro,” Journal of Cellular and Molecular Medicine, vol. 10, no. 3, pp. 708–715, 2006.
[29]  S. Kumar, T. E. Witzig, M. Timm et al., “Bone marrow angiogenic ability and expression of angiogenic cytokines in myeloma: evidence favoring loss of marrow angiogenesis inhibitory activity with disease progression,” Blood, vol. 104, no. 4, pp. 1159–1165, 2004.
[30]  N. I. Moldovan, “Functional adaptation: the key to plasticity of cardiovascular “stem” cells?” Stem Cells and Development, vol. 14, no. 2, pp. 111–121, 2005.
[31]  B. Barleon, S. Sozzani, D. Zhou, H. A. Weich, A. Mantovani, and D. Marmé, “Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1,” Blood, vol. 87, no. 8, pp. 3336–3343, 1996.
[32]  G. H. Fong, J. Rossant, M. Gertsenstein, and M. L. Breitman, “Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium,” Nature, vol. 376, no. 6535, pp. 66–70, 1995.
[33]  F. Shalaby, J. Ho, W. L. Stanford et al., “A requirement for Flk1 in primitive and definitive hematopoiesis and vasculogenesis,” Cell, vol. 89, no. 6, pp. 981–990, 1997.
[34]  C. D. Baroni, D. Vitolo, D. Remotti et al., “Immunohistochemical heterogeneity of macrophage subpopulations in human lymphoid tissues,” Histopathology, vol. 11, no. 10, pp. 1029–1042, 1987.
[35]  A. J. Maniotis, R. Folberg, A. Hess et al., “Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry,” American Journal of Pathology, vol. 155, no. 3, pp. 739–752, 1999.
[36]  A. Ben-Baruch, “Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators,” Seminars in Cancer Biology, vol. 16, no. 1, pp. 38–52, 2006.
[37]  M. K. Brimnes, A. J. Vangsted, L. M. Knudsen et al., “Increased level of both CD4+FOXP3+ Regulatory t Cells and CD14+HLA-DR?/low myeloid-derived suppressor cells and decreased level of dendritic cells in patients with multiple myeloma,” Scandinavian Journal of Immunology, vol. 72, no. 6, pp. 540–547, 2010.
[38]  D. I. Gabrilovich and S. Nagaraj, “Myeloid-derived suppressor cells as regulators of the immune system,” Nature Reviews Immunology, vol. 9, no. 3, pp. 162–174, 2009.
[39]  P. Serafini, K. Meckel, M. Kelso et al., “Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function,” Journal of Experimental Medicine, vol. 203, no. 12, pp. 2691–2702, 2006.
[40]  J. Epstein and S. Yaccoby, “Consequences of interactions between the bone marrow stroma and myeloma,” The Hematology Journal, vol. 4, no. 5, pp. 310–314, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133