全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Which Imaging Modality Is Superior for Prediction of Response to Neoadjuvant Chemotherapy in Patients with Triple Negative Breast Cancer?

DOI: 10.1155/2013/964863

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background and Objectives. Triple negative breast cancer (TNBC) has been shown to be generally chemosensitive. We sought to investigate the utility of mammography (MMG), ultrasonography (US), and breast magnetic resonance imaging (MRI) in predicting residual disease following neoadjuvant chemotherapy for TNBC. Methods. We identified 148 patients with 151 Stage I–III TNBC treated with neoadjuvant chemotherapy. Residual tumor size was estimated by MMG, US, and/or MRI prior to surgical intervention and compared to the subsequent pathologic residual tumor size. Data were compared using chi-squared test. Results. Of 151 tumors, 44 (29%) did not have imaging performed prior to surgical treatment. Thirty-eight (25%) tumors underwent a pathologic complete response (pCR), while 113 (75%) had residual invasive disease. The imaging modality was accurate to within 1?cm of the final pathologic residual disease in 74 (69%) cases and within 2?cm in 94 (88%) cases. Groups were similar with regards to patient age, race, tumor size and grade, and clinical stage ( ). Accuracy to within 1?cm was the highest for US (83%) and the lowest for MMG (56%) ( ). Conclusions. Breast US and MRI were more accurate than MMG in predicting residual tumor size following neoadjuvant chemotherapy in patients with TNBC. None of the imaging modalities were predictive of a pCR. 1. Introduction Breast cancer is the most common cancer in women in the USA, but it is a heterogeneous disease and treatment recommendations vary accordingly. The expressions of steroid hormone receptors such as estrogen receptor (ER) and progesterone receptor (PR), and the oncogene ErbB-2/human epidermal growth factor receptor 2 (HER-2) are important factors in distinguishing breast cancer subtypes. Triple negative breast cancer (TNBC), which is characterized by a lack of ER, PR, and HER-2 expressions, comprises approximately 11%–20% of all newly diagnosed breast cancers [1–5]. Previous studies demonstrate that patients with TNBC have a poorer outcome compared with other subtypes of breast cancer [1, 6–10]. The risk of recurrence for patients with TNBC peaks within the first 3 years following diagnosis and treatment, and the majority of deaths take place within the first 5 years after initial treatment [11–14]. Directed therapy options for treating TNBC are limited as these tumors lack a therapeutic target that can be treated with hormone therapy or trastuzumab. As a result, chemotherapy is the standard method used to treat these patients [15–17]. Although randomized studies of neoadjuvant versus adjuvant chemotherapy

References

[1]  R. Ismail-Khan and M. M. Bui, “A review of triple-negative breast cancer,” Cancer Control, vol. 17, no. 3, pp. 173–176, 2010.
[2]  E. A. Rakha, M. E. El-Sayed, A. R. Green, A. H. S. Lee, J. F. Robertson, and I. O. Ellis, “Prognostic markers in triple-negative breast cancer,” Cancer, vol. 109, no. 1, pp. 25–32, 2007.
[3]  T. C. de Ruijter, J. Veeck, J. P. J. de Hoon, M. van Engeland, and V. C. Tjan-Heijnen, “Characteristics of triple-negative breast cancer,” Journal of Cancer Research and Clinical Oncology, vol. 137, no. 2, pp. 183–192, 2011.
[4]  N. U. Lin, A. Vanderplas, M. E. Hughes, et al., “Clinicopathological features and sites of recurrence according to breast cancer subtype in the National Comprehensive Cancer Network (NCCN),” Journal of Clinical Oncology, vol. 27, no. 15, supplement, abstract 543, 2009.
[5]  C. M. Perou, T. S?rile, M. B. Eisen et al., “Molecular portraits of human breast tumours,” Nature, vol. 406, no. 6797, pp. 747–752, 2000.
[6]  J. M. Dolle, J. R. Daling, E. White et al., “Risk factors for triple-negative breast cancer in women under the age of 45 years,” Cancer Epidemiology Biomarkers and Prevention, vol. 18, no. 4, pp. 1157–1166, 2009.
[7]  R. C. Millikan, B. Newman, C. K. Tse et al., “Epidemiology of basal-like breast cancer,” Breast Cancer Research and Treatment, vol. 109, no. 1, pp. 123–139, 2008.
[8]  L. A. Carey, C. M. Perou, C. A. Livasy et al., “Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study,” Journal of the American Medical Association, vol. 295, no. 21, pp. 2492–2502, 2006.
[9]  T. Sorlie, R. Tibshirani, J. Parker, et al., “Repeated observation of breast tumor subtypes in independent gene expression data sets,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 14, pp. 8418–8423, 2003.
[10]  D. M. Abd El-Rehim, G. Ball, S. E. Finder et al., “High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses,” International Journal of Cancer, vol. 116, no. 3, pp. 340–350, 2005.
[11]  M. Tischkowitz, J. S. Brunet, L. R. Bégin et al., “Use of immunohistochemical markers can refine prognosis in triple negative breast cancer,” BMC Cancer, vol. 7, article 134, 2007.
[12]  R. Dent, M. Trudeau, K. I. Pritchard et al., “Triple-negative breast cancer: clinical features and patterns of recurrence,” Clinical Cancer Research, vol. 13, no. 15, pp. 4429–4434, 2007.
[13]  L. G. Fulford, D. F. Easton, J. S. Reis-Filho et al., “Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast,” Histopathology, vol. 49, no. 1, pp. 22–34, 2006.
[14]  L. N. Harris, G. Broadwater, N. U. Lin et al., “Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342,” Breast Cancer Research, vol. 8, no. 6, article R66, 2006.
[15]  D. Mauri, N. Pavlidis, and J. P. A. Ioannidis, “Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis,” Journal of the National Cancer Institute, vol. 97, no. 3, pp. 188–194, 2005.
[16]  C. Liedtke, C. Mazouni, K. R. Hess et al., “Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer,” Journal of Clinical Oncology, vol. 26, no. 8, pp. 1275–1281, 2008.
[17]  R. Rouzier, C. M. Perou, W. F. Symmans et al., “Breast cancer molecular subtypes respond differently to preoperative chemotherapy,” Clinical Cancer Research, vol. 11, no. 16, pp. 5678–5685, 2005.
[18]  W. T. Yang, W. W. M. Lam, H. Cheung, M. Suen, W. W. K. King, and C. Metreweli, “Sonographic, magnetic resonance imaging, and mammographic assessments of preoperative size of breast cancer,” Journal of Ultrasound in Medicine, vol. 16, no. 12, pp. 791–797, 1997.
[19]  H. P. Sinn, H. Schmid, H. Junkermann et al., “Histological regression of breast cancer after primary (neoadjuvant) chemotherapy,” Geburtshilfe und Frauenheilkunde, vol. 54, no. 10, pp. 552–558, 1994.
[20]  M. H. El-Didi, M. M. Moneer, H. M. Khaled, and S. Makarem, “Pathological assessment of the response of locally advanced breast cancer to neoadjuvant chemotherapy and its implications for surgical management,” Surgery Today, vol. 30, no. 3, pp. 249–254, 2000.
[21]  S. Huber, M. Medl, M. Vesely, H. Czembirek, I. Zuna, and S. Delorme, “Ultrasonographic tissue characterization in monitoring tumor response to neoadjuvant chemotherapy in locally advanced breast cancer (work in progress),” Journal of Ultrasound in Medicine, vol. 19, no. 10, pp. 677–686, 2000.
[22]  W. T. Yang, M. Dryden, K. Broglio et al., “Mammographic features of triple receptor-negative primary breast cancers in young premenopausal women,” Breast Cancer Research and Treatment, vol. 111, no. 3, pp. 405–410, 2008.
[23]  J. Herrada, R. B. Iyer, E. N. Atkinson, N. Sneige, A. U. Buzdar, and G. N. Hortobagyi, “Relative value of physical examination, mammography, and breast sonography in evaluating the size of the primary tumor and regional lymph node metastases in women receiving neoadjuvant chemotherapy for locally advanced breast carcinoma,” Clinical Cancer Research, vol. 3, no. 9, pp. 1565–1569, 1997.
[24]  M. A. Helvie, L. K. Joynt, R. L. Cody, L. J. Pierce, D. D. Adler, and S. D. Merajver, “Locally advanced breast carcinoma: accuracy of mammography versus clinical examination in the prediction of residual disease after chemotherapy,” Radiology, vol. 198, no. 2, pp. 327–332, 1996.
[25]  J. D. Keune, D. B. Jeffe, M. Schootman, A. Hoffman, W. E. Gillanders, and R. L. Aft, “Accuracy of ultrasonography and mammography in predicting pathologic response after neoadjuvant chemotherapy for breast cancer,” The American Journal of Surgery, vol. 199, no. 4, pp. 477–484, 2010.
[26]  S. Huber, M. Wagner, I. Zuna, M. Medl, H. Czembirek, and S. Delorme, “Locally advanced breast carcinoma: evaluation of mammography in the prediction of residual disease after induction chemotherapy,” Anticancer Research, vol. 20, no. 1B, pp. 553–558, 2000.
[27]  L. J. Esserman, N. Hylton, L. Yassa, J. Barclay, S. Frankel, and E. Sickles, “Utility of magnetic resonance imaging in the management of breast cancer: evidence for improved preoperative staging,” Journal of Clinical Oncology, vol. 17, no. 1, pp. 110–119, 1999.
[28]  P. Belli, M. Costantini, C. Malaspina, A. Magistrelli, G. LaTorre, and L. Bonomo, “MRI accuracy in residual disease evaluation in breast cancer patients treated with neoadjuvant chemotherapy,” Clinical Radiology, vol. 61, no. 11, pp. 946–953, 2006.
[29]  S. C. Partridge, J. E. Gibbs, Y. Lu, L. J. Esserman, D. Sudilovsky, and N. M. Hylton, “Accuracy of MR imaging for revealing residual breast cancer in patients who have undergone neoadjuvant chemotherapy,” American Journal of Roentgenology, vol. 179, no. 5, pp. 1193–1199, 2002.
[30]  M. S. Kwong, G. G. Chung, L. J. Horvath et al., “Postchemotherapy MRI overestimates residual disease compared with histopathology in responders to neoadjuvant therapy for locally advanced breast cancer,” Cancer Journal, vol. 12, no. 3, pp. 212–221, 2006.
[31]  V. Guarneri, A. Pecchi, F. Piacentini, et al., “Magnetic resonancy imaging and ultrasonography in predicting infiltrating residual disease after preoperative chemotherapy in Stage II–III breast cancer,” Annals of Surgical Oncology, vol. 18, no. 8, pp. 2150–2157, 2011.
[32]  E. Yeh, P. Slanetz, D. B. Kopans et al., “Prospective comparison of mammography, sonography, and MRI in patients undergoing neoadjuvant chemotherapy for palpable breast cancer,” American Journal of Roentgenology, vol. 184, no. 3, pp. 868–877, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133