全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane

DOI: 10.1155/2013/872957

Full-Text   Cite this paper   Add to My Lib

Abstract:

Advanced-stage ovarian cancer is characterized by high mortality due to development of resistance to conventional chemotherapy. Novel compounds that can enhance the efficacy of conventional chemotherapy in ovarian cancer may overcome this drug resistance. Consumption of green tea (epigallocatechin gallate, EGCG) and cruciferous vegetables (sulforaphane, SFN) is inversely associated with occurrence of ovarian cancer and has anticancer effects through targeting multiple molecules in cancer cells. However, the effects of EGCG and SFN combinational treatment on ovarian cancer cells and on efficacy of cisplatin to these cells are unknown. In this study, EGCG or SFN was used to treat both cisplatin-sensitive (A2780) and cisplatin-resistant (A2780/CP20) ovarian cancer cells alone or in combination with cisplatin. We found that EGCG and SFN combinational treatment can reduce cell viability of both ovarian cancer cell lines time- and dose-dependently. Furthermore, EGCG and SFN combinational treatment can enhance cisplatin-induced apoptosis and G2/M phase arrest, thereby enhancing the efficacy of cisplatin on both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. EGCG and SFN combinational treatment upregulated p21 expression induced by cisplatin in cisplatin-sensitive ovarian cancer cells, while p27 expression was not regulated by these treatments. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer. 1. Introduction Ovarian cancer has the highest mortality among gynecologic cancers. Most patients with ovarian cancer are diagnosed at late stages due to lack of effective screening strategies and specific symptoms associated with early-stage disease. Conventional treatment for late stages of ovarian cancers is surgical excision followed by platinum/taxane combination chemotherapy. Although this treatment regime is effective as the first-line treatment, recurrence occurs in up to 75% of ovarian cancer patients. Patients with recurrent ovarian cancer ultimately develop resistance to chemotherapy and eventually succumb to the disease [1]. Thus, drug resistance is an urgent problem in the current treatment for ovarian cancer. The inefficiency of current conventional chemotherapies to kill cancer cells in a timely manner, which can allow necessary time for ovarian cancer cells to evolve drug resistance under pressure of selection, has been theorized to be one reason chemotherapy resistance develops [2]. Therefore, novel therapies are needed which can improve the efficacy of conventional

References

[1]  R. Agarwal and S. B. Kaye, “Ovarian cancer: strategies for overcoming resistance to chemotherapy,” Nature Reviews Cancer, vol. 3, no. 7, pp. 502–516, 2003.
[2]  H. Chen, T. M. Hardy, and T. O. Tollefsbol, “Epigenomics of ovarian cancer and its chemoprevention,” Frontiers in Genetics, vol. 2, article 67, 2011.
[3]  H. G. Wendel, E. De Stanchina, J. S. Fridman et al., “Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy,” Nature, vol. 428, no. 6980, pp. 332–337, 2004.
[4]  M. Zhang, C. W. Binns, and A. H. Lee, “Tea consumption and ovarian cancer risk: a case-control study in China,” Cancer Epidemiology Biomarkers and Prevention, vol. 11, no. 8, pp. 713–718, 2002.
[5]  J. S. Yoon, A. R. Kristal, K. G. Wicklund, K. L. Cushing-Haugen, and M. A. Rossing, “Coffee, tea, colas, and risk of epithelial ovarian cancer,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 3, pp. 712–716, 2008.
[6]  C. M. Nagle, C. M. Olsen, C. J. Bain, D. C. Whiteman, A. C. Green, and P. M. Webb, “Tea consumption and risk of ovarian cancer,” Cancer Causes and Control, vol. 21, no. 9, pp. 1485–1491, 2010.
[7]  G. van Poppel, D. T. H. Verhoeven, H. Verhagen, and R. A. Goldbohm, “Brassica vegetables and cancer prevention: epidemiology and mechanisms,” Advances in Experimental Medicine and Biology, vol. 472, pp. 159–168, 1999.
[8]  A. Mittal, M. S. Pate, R. C. Wylie, T. O. Tollefsbol, and S. K. Katiyar, “EGCG down-regulates telomerase in human breast carcinoma MCF-7 cells, leading to suppression of cell viability and induction of apoptosis,” International Journal of Oncology, vol. 24, no. 3, pp. 703–710, 2004.
[9]  F. Spinella, L. Rosanò, V. Di Castro et al., “Green tea polyphenol epigallocatechin-3-gallate inhibits the endothelin axis and downstream signaling pathways in ovarian carcinoma,” Molecular Cancer Therapeutics, vol. 5, no. 6, pp. 1483–1492, 2006.
[10]  J. B. Berletch, C. Liu, W. K. Love, L. G. Andrews, S. K. Katiyar, and T. O. Tollefsbol, “Epigenetic and genetic mechanisms contribute to telomerase inhibition by EGCG,” Journal of Cellular Biochemistry, vol. 103, no. 2, pp. 509–519, 2008.
[11]  H. Chen, Y. Li, and T. O. Tollefsbol, “Strategies targeting telomerase inhibition,” Molecular Biotechnology, vol. 41, no. 2, pp. 194–199, 2009.
[12]  M. Z. Fang, Y. Wang, N. Ai et al., “Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines,” Cancer Research, vol. 63, no. 22, pp. 7563–7570, 2003.
[13]  R. K. Thimmulappa, K. H. Mai, S. Srisuma, T. W. Kensler, M. Yamamoto, and S. Biswal, “Identification of Nrf2-regulated genes induced by the chemopreventive agent sulforaphane by oligonucleotide microarray,” Cancer Research, vol. 62, no. 18, pp. 5196–5203, 2002.
[14]  S. Langou?t, L. L. Furge, N. Kerriguy, K. Nakamura, A. Guillouzo, and F. P. Guengerich, “Inhibition of human cytochrome P450 enzymes by 1,2-dithiole-3-thione, oltipraz and its derivatives, and sulforaphane,” Chemical Research in Toxicology, vol. 13, no. 4, pp. 245–252, 2000.
[15]  L. Gamet-Payrastre, P. Li, S. Lumeau et al., “Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells,” Cancer Research, vol. 60, no. 5, pp. 1426–1433, 2000.
[16]  E. Bertl, H. Bartsch, and C. Gerh?user, “Inhibition of angiogenesis and endothelial cell functions are novel sulforaphane-mediated mechanisms in chemoprevention,” Molecular Cancer Therapeutics, vol. 5, no. 3, pp. 575–585, 2006.
[17]  E. Heiss, C. Herhaus, K. Klimo, H. Bartsch, and C. Gerh?user, “Nuclear factor kappa B is a molecular target for sulforaphane-mediated anti-inflammatory mechanisms,” The Journal of Biological Chemistry, vol. 276, no. 34, pp. 32008–32015, 2001.
[18]  M. C. Myzak, P. A. Karplus, F. L. Chung, and R. H. Dashwood, “A novel mechanism of chemoprotection by sulforaphane: inhibition of histone deacetylase,” Cancer Research, vol. 64, no. 16, pp. 5767–5774, 2004.
[19]  S. W. Huh, S. M. Bae, Y. W. Kim et al., “Anticancer effects of (-)-epigallocatechin-3-gallate on ovarian carcinoma cell lines,” Gynecologic Oncology, vol. 94, no. 3, pp. 760–768, 2004.
[20]  R. R. Mi and H. Ni, “MDM2 sensitizes a human ovarian cancer cell line,” Gynecologic Oncology, vol. 90, no. 2, pp. 238–244, 2003.
[21]  X. Li, G. Wang, J. Zhao et al., “Antiproliferative effect of β-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase,” Cellular and Molecular Life Sciences, vol. 62, no. 7-8, pp. 894–904, 2005.
[22]  L. S. Mangala, V. Zuzel, R. Schmandt et al., “Therapeutic targeting of ATP7B in ovarian carcinoma,” Clinical Cancer Research, vol. 15, no. 11, pp. 3770–3780, 2009.
[23]  W. A. Spannuth, L. S. Mangala, R. L. Stone et al., “Converging evidence for efficacy from parallel EphB4-targeted approaches in ovarian carcinoma,” Molecular Cancer Therapeutics, vol. 9, no. 8, pp. 2377–2388, 2010.
[24]  K. Katano, A. Kondo, R. Safaei et al., “Acquisition of resistance to cisplatin is accompanied by changes in the cellular pharmacology of copper,” Cancer Research, vol. 62, no. 22, pp. 6559–6565, 2002.
[25]  M. Z. Fang, Y. Wang, N. Ai et al., “Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines,” Cancer Research, vol. 63, no. 22, pp. 7563–7570, 2003.
[26]  H. Wei, X. Zhang, J. F. Zhao, Z. Y. Wang, D. Bickers, and M. Lebwohl, “Scavenging of hydrogen peroxide and inhibition of ultraviolet light- induced oxidative DNA damage by aqueous extracts from green and black teas,” Free Radical Biology and Medicine, vol. 26, no. 11-12, pp. 1427–1435, 1999.
[27]  J. W. Fahey and P. Talalay, “Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes,” Food and Chemical Toxicology, vol. 37, no. 9-10, pp. 973–979, 1999.
[28]  B. D. Lawenda, K. M. Kelly, E. J. Ladas, S. M. Sagar, A. Vickers, and J. B. Blumberg, “Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy?” Journal of the National Cancer Institute, vol. 100, no. 11, pp. 773–783, 2008.
[29]  K. A. Conklin, “Chemotherapy-associated oxidative stress: impact on chemotherapeutic effectiveness,” Integrative Cancer Therapies, vol. 3, no. 4, pp. 294–300, 2004.
[30]  M. Berndtsson, M. H?gg, T. Panaretakis, A. M. Havelka, M. C. Shoshan, and S. Linder, “Acute apoptosis by cisplatin requires induction of reactive oxygen species but is not associated with damage to nuclear DNA,” International Journal of Cancer, vol. 120, no. 1, pp. 175–180, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133