全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

DOI: 10.1155/2013/897025

Full-Text   Cite this paper   Add to My Lib

Abstract:

We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES)-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy. 1. Introduction Whilst inhibitors of the mTOR signaling pathways have been approved for use against advanced renal cell carcinoma [1, 2], their effectiveness against hematological malignancies remains unclear [3]. Several rapalog mTOR inhibitors, including rapamycin [4, 5], temsirolimus (CCI-779) [6–9], and everolimus (RAD001) [10], have shown preclinical potential in hematological malignancies. However, one factor potentially limiting the effectiveness of rapalogs for treating hematological malignancies is the fact that in vitro exposure to mTOR inhibitors often only induces G1/S cell cycle arrest without apoptosis [11, 12]. Still, there is no doubt that, in some in vivo treated models, rapalogs can cause tumor cell death. Good clinical examples of this were seen in patients with mantle cell lymphoma [13] or nonmantle cell non-Hodgkin’s lymphoma subtypes [14] treated with temsirolimus: objective responses were observed in some patients with reduction of tumor size. Thus, lack of in vitro tumor cell apoptosis may not accurately reflect the in vivo situation where tumor cell survival can be regulated by the microenvironment which itself may be impacted by mTOR inhibitors. In a prior report [6], we identified tumor cell apoptosis in mice treated

References

[1]  M. B. Atkins, M. Hidalgo, W. M. Stadler et al., “Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma,” Journal of Clinical Oncology, vol. 22, no. 5, pp. 909–918, 2004.
[2]  G. Hudes, M. Carducci, P. Tomczak et al., “Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma,” The New England Journal of Medicine, vol. 356, pp. 2271–2281, 2007.
[3]  A. Younes and N. Samad, “Utility of mTOR inhibition in hematologic malignancies,” Oncologist, vol. 16, no. 6, pp. 730–741, 2011.
[4]  N. Raje, S. Kumar, T. Hideshima et al., “Combination of the mTOR inhibitor rapamycin and CC-5013 has synergistic activity in multiple myeloma,” Blood, vol. 104, no. 13, pp. 4188–4193, 2004.
[5]  M. Zangari, F. Cavallo, and G. Tricot, “Farnesyltransferase inhibitors and rapamycin in the treatment of multiple myeloma,” Current Pharmaceutical Biotechnology, vol. 7, no. 6, pp. 449–453, 2006.
[6]  P. Frost, F. Moatamed, B. Hoang et al., “In vivo antitumor effects of the mTOR inhibitor CCI-779 against human multiple myeloma cells in a xenograft model,” Blood, vol. 104, no. 13, pp. 4181–4187, 2004.
[7]  T. Str?mberg, A. Dimberg, A. Hammarberg et al., “Rapamycin sensitizes multiple myeloma cells to apoptosis induced by dexamethasone,” Blood, vol. 103, no. 8, pp. 3138–3147, 2004.
[8]  H. Yan, P. Frost, Y. Shi et al., “Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis,” Cancer Research, vol. 66, no. 4, pp. 2305–2313, 2006.
[9]  P. Frost, Y. Shi, B. Hoang, and A. Lichtenstein, “AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells,” Oncogene, vol. 26, no. 16, pp. 2255–2262, 2007.
[10]  T. Ikezoe, C. Nishioka, T. Tasaka et al., “The antitumor effects of sunitinib (formerly SU11248) against a variety of human hematologic malignancies: enhancement of growth inhibition via inhibition of mammalian target of rapamcycin signaling,” Molecular Cancer Therapeutics, vol. 5, no. 10, pp. 2522–2530, 2006.
[11]  Y. Shi, J. H. Hsu, L. Hu, J. Gera, and A. Lichtenstein, “Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6,” Journal of Biological Chemistry, vol. 277, no. 18, pp. 15712–15720, 2002.
[12]  Y. Shi, J. Gera, L. Hu et al., “Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779,” Cancer Research, vol. 62, no. 17, pp. 5027–5034, 2002.
[13]  T. E. Witzig, S. M. Geyer, I. Ghobrial et al., “Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma,” Journal of Clinical Oncology, vol. 23, no. 23, pp. 5347–5356, 2005.
[14]  S. M. Smith, K. van Besien, T. Karrison et al., “Temsirolimus has activity in non-mantle cell non-Hodgkin's lymphoma subtypes: the University of Chicago phase II consortium,” Journal of Clinical Oncology, vol. 28, no. 31, pp. 4740–4746, 2010.
[15]  J. F. Gera, I. K. Mellinghoff, Y. Shi et al., “AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression,” Journal of Biological Chemistry, vol. 279, no. 4, pp. 2737–2746, 2004.
[16]  M. Kullmann, U. G?pfert, B. Siewe, and L. Hengst, “ELAV/Hu proteins inhibit p27 translation via an IRES element in the p27 5′UTR,” Genes and Development, vol. 16, no. 23, pp. 3087–3099, 2002.
[17]  W. K. Miskimins, G. Wang, M. Hawkinson, and R. Miskimins, “Control of cyclin-dependent kinase inhibitor p27 expression by cap-independent translation,” Molecular and Cellular Biology, vol. 21, no. 15, pp. 4960–4967, 2001.
[18]  R. LeBlanc, L. P. Catley, T. Hideshima et al., “Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model,” Cancer Research, vol. 62, no. 17, pp. 4996–5000, 2002.
[19]  M. S. Neshat, I. K. Mellinghoff, C. Tran et al., “Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 18, pp. 10314–10319, 2001.
[20]  P. Frost, Y. Shi, B. Hoang, J. Gera, and A. Lichtenstein, “Regulation of D-cyclin translation inhibition in myeloma cells treated with mammalian target of rapamycin inhibitors: rationale for combined treatment with extracellular signal-regulated kinase inhibitors and rapamycin,” Molecular Cancer Therapeutics, vol. 8, no. 1, pp. 83–93, 2009.
[21]  S. Ackler, Y. Xiao, M. J. Mitten et al., “ABT-263 and rapamycin act cooperatively to kill lymphoma cells in vitro and in vivo,” Molecular Cancer Therapeutics, vol. 7, no. 10, pp. 3265–3274, 2008.
[22]  H. Jiang, J. Coleman, R. Miskimins, R. Srinivasan, and W. K. Miskimins, “Cap-independent translation through the p27 5′-UTR,” Nucleic Acids Research, vol. 35, no. 14, pp. 4767–4778, 2007.
[23]  M. E. Feldman, B. Apsel, A. Uotila et al., “Active-site inhibitors of mTOR target rapamycin-resistant outputs of mTORC1 and mTORC2,” PLoS Biology, vol. 7, no. 2, article e38, 2009.
[24]  K. Yu, C. Shi, L. Toral-Barza et al., “Beyond rapalog therapy: preclinical pharmacology and antitumor activity of WYE-125132, an ATP-competitive and specific inhibitor of mTORC1 and mTORC2,” Cancer Research, vol. 70, no. 2, pp. 621–631, 2010.
[25]  B. Hoang, P. Frost, Y. Shi et al., “Targeting TORC2 in multiple myeloma with a new mTOR kinase inhibitor,” Blood, vol. 116, no. 22, pp. 4560–4568, 2010.
[26]  B. L. Falcon, S. Barr, P. C. Gokhale et al., “Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors,” Cancer Research, vol. 71, no. 5, pp. 1573–1583, 2011.
[27]  D. Del Bufalo, L. Ciuffreda, D. Trisciuoglio et al., “Antiangiogenic potential of the mammalian target of rapamycin inhibitor temsirolimus,” Cancer Research, vol. 66, no. 11, pp. 5549–5554, 2006.
[28]  Q. Xue, B. Hopkins, C. Perruzzi, D. Udayakumar, D. Sherris, and L. E. Benjamin, “Palomid 529, a novel small-molecule drug, is a TORC1/TORC2 inhibitor that reduces tumor growth, tumor angiogenesis, and vascular permeability,” Cancer Research, vol. 68, no. 22, pp. 9551–9557, 2008.
[29]  W. Chen, T. Ma, X. N. Shen et al., “Macrophage-induced tumor angiogenesis is regulated by the TSC2-mTOR pathway,” Cancer Research, vol. 72, pp. 1363–1372, 2012.
[30]  I. Stein, A. Itin, P. Einat, R. Skaliter, Z. Grossman, and E. Keshet, “Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia,” Molecular and Cellular Biology, vol. 18, no. 6, pp. 3112–3119, 1998.
[31]  A. G. Bert, R. Grépin, M. A. Vadas, and G. J. Goodall, “Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs,” RNA, vol. 12, no. 6, pp. 1074–1083, 2006.
[32]  R. M. Young, S. J. Wang, J. D. Gordan, X. Ji, S. A. Liebhaber, and M. C. Simon, “Hypoxia-mediated selective mRNA translation by an internal ribosome entry site-independent mechanism,” Journal of Biological Chemistry, vol. 283, no. 24, pp. 16309–16319, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133