全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Predictive Factors of Response in HER2-Positive Breast Cancer Treated by Neoadjuvant Therapy

DOI: 10.1155/2013/854121

Full-Text   Cite this paper   Add to My Lib

Abstract:

Since 2005, major progresses have been made in the neoadjuvant treatment of HER2-positive breast cancer. Trastuzumab introduction associated with chemotherapy has been the first major step leading to the improvement of the complete pathological response rate and, like in the adjuvant studies, better survivals. Dual HER2 blockade has been the next step and trastuzumab is associated now with other anti-HER2 therapies like lapatinib or pertuzumab, the latter being much more easy to use in combination with chemotherapy. Additional knowledge is necessary to better define within the HER2 tumor subgroup which patients could benefit more from targeted therapies. Different biomarkers have been studied to predict the response after anti-HER2 neoadjuvant therapies but until now none has been validated. 1. Introduction Neoadjuvant chemotherapy in breast cancer treatment is now recognized as a standard care to increase conservative surgery [1, 2]. Its utility is also documented in inflammatory or locally advanced tumors [3]. Long-term results of neoadjuvant chemotherapy are equivalent to those obtained with adjuvant chemotherapy if locoregional treatments are fully applied [1, 2]. In HER2-positive breast cancer, randomized studies with and without anthracyclines have demonstrated the essential role of anti-HER2 therapies in obtaining increased pathological complete response rates and good long-term results. 2. Neoadjuvant Anti-HER2 Therapies and Their Impact on the Pathological Complete Response Rate 2.1. Trastuzumab Several randomized trials have evaluated, in the neoadjuvant setting, the role of trastuzumab (Herceptin, Roche laboratory), a recombinant humanized monoclonal antibody that targets HER2 receptor. The first randomized trial in patients with operable noninflammatory disease was stopped early when the pathological complete response (pCR) rate in the trastuzumab group was more than twice as high as that of the control group (65% versus 26%) [4, 5]. The pCR rates in the following studies varied between 26% and 40% in the trastuzumab arms [6–9]. These differences can be explained by various inclusion criteria, different type, and different duration of the regimens. Nonetheless, all the studies showed a higher pCR rate when trastuzumab was combined with chemotherapy compared to chemotherapy alone (Table 1). In the ABCSG-24 study, 536 patients were randomized to receive either 6 cycles of EDC (epirubicin, docetaxel, and capecitabine) or 6 cycles of ED (epirubicin, Docetaxel) [7]. Patients with HER2-positive tumors were also randomized to receive trastuzumab or

References

[1]  D. Mauri, N. Pavlidis, and J. P. A. Ioannidis, “Neoadjuvant versus adjuvant systemic treatment in breast cancer: a meta-analysis,” Journal of the National Cancer Institute, vol. 97, no. 3, pp. 188–194, 2005.
[2]  M. Kaufmann, G. Von minckwitz, H. D. Bear et al., “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: new perspectives 2006,” Annals of Oncology, vol. 18, no. 12, pp. 1927–1934, 2007.
[3]  S. Dawood, S. D. Merajver, P. Viens et al., “International expert panel on inflammatory breast cancer: consensus statement for standardized diagnosis and treatment,” Annals of Oncology, vol. 22, no. 3, pp. 515–523, 2011.
[4]  A. U. Buzdar, N. K. Ibrahim, D. Francis et al., “Significantly higher pathologic complete remission rate after neoadjuvant therapy with trastuzumab, paclitaxel, and epirubicin chemotherapy: results of a randomized trial in human epidermal growth factor receptor 2-positive operable breast cancer,” Journal of Clinical Oncology, vol. 23, no. 16, pp. 3676–3685, 2005.
[5]  A. U. Buzdar, V. Valero, N. K. Ibrahim et al., “Neoadjuvant therapy with paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide chemotherapy and concurrent trastuzumab in human epidermal growth factor receptor 2-positive operable breast cancer: an update of the initial randomized study population and data of additional patients treated with the same regimen,” Clinical Cancer Research, vol. 13, no. 1, pp. 228–233, 2007.
[6]  H. R. Chang, J. Glaspy, M. A. Allison et al., “Differential response of triple-negative breast cancer to a docetaxel and carboplatin-based neoadjuvant treatment,” Cancer, vol. 116, no. 18, pp. 4227–4237, 2010.
[7]  G. Steger, R. Greil, R. Jakesz, et al., “Final Results of ABCSG-24, a Randomized Phase III Study Comparing Epirubicin, Docetaxel, and Capecitabine (EDC) to Epirubicin and Docetaxel (ED) as Neoadjuvant Treatment for Early Breast Cancer and Comparing ED/EDC + Trastuzumab (T) to ED/EDC as Neoadjuvant Treatment for Early HER-2 Positive Breast Cancer,” Cancer Research, vol. 69, supplement 24, 2009.
[8]  L. Gianni, W. Eiermann, V. Semiglazov et al., “Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone, in patients with HER2-positive locally advanced breast cancer (the NOAH trial): a randomised controlled superiority trial with a parallel HER2-negative cohort,” The Lancet, vol. 375, no. 9712, pp. 377–384, 2010.
[9]  J. Y. Pierga, S. Delaloge, M. Espié et al., “A multicenter randomized phase II study of sequential epirubicin/ cyclophosphamide followed by docetaxel with or without celecoxib or trastuzumab according to HER2 status, as primary chemotherapy for localized invasive breast cancer patients,” Breast Cancer Research and Treatment, vol. 122, no. 2, pp. 429–437, 2010.
[10]  M. Untch, M. Rezai, S. Loibl et al., “Neoadjuvant treatment with trastuzumab in HER2-positive breast cancer: results from the GeparQuattro study,” Journal of Clinical Oncology, vol. 28, no. 12, pp. 2024–2031, 2010.
[11]  V. Semiglazov, W. Eiermann, M. Zambetti, et al., “Surgery following neoadjuvant therapy in patients with HER2-positive locally advanced or inflammatory breast cancer participating in the NeOAdjuvant Herceptin (NOAH) study,” European Journal of Surgical Oncology, vol. 37, pp. 856–863, 2011.
[12]  J. Baselga, I. Bradbury, H. Eidtmann, et al., “Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): a randomised, open-label, multicentre, phase 3 trial,” The Lancet, vol. 379, pp. 633–640, 2012.
[13]  M. Untch, S. Loibl, J. Bischoff, et al., “Lapatinib versus trastuzumab in combination with neoadjuvant anthracycline-taxane-based chemotherapy (GeparQuinto, GBG 44): a randomised phase 3 trial,” The Lancet Oncology, vol. 13, pp. 135–144, 2012.
[14]  V. Guarneri, A. Frassoldati, A. Bottini, et al., “Preoperative chemotherapy plus trastuzumab, lapatinib, or both in human epidermal growth factor receptor 2-positive operable breast cancer: results of the randomized phase II CHER-LOB study,” Journal of Clinical Oncology, vol. 30, pp. 1989–1995, 2012.
[15]  A. Robidoux, G. Tang, P. Rastogi, et al., “Evaluation of lapatinib as a component of neoadjuvant therapy for HER2+ operable breast cancer: NSABP protocol B-41,” Journal of Clinical Oncology, 2012.
[16]  F. A. Holmes, Y. M. Nagarwala, V. A. Espina, et al., “Correlation of molecular effects and pathologic complete response to preoperative lapatinib and trastuzumab, separately and combined prior to neoadjuvant breast cancer chemotherapy,” Journal of Clinical Oncology, vol. 29, 2011.
[17]  E. Alba, J. Albanell, J. de la Haba, et al., “Lapatinib vs trastuzumab in combination with standard EC-D chemotherapy in the neaodjuvant treatment of HER2+ patients. Results from the GEICAM 2006-14 phase II randomized trial,” Cancer Research, vol. 71, supplement 24, 2011.
[18]  L. Gianni, T. Pienkowski, Y. H. Im, et al., “Efficacy and safety of neoadjuvant pertuzumab and trastuzumab in women with locally advanced, inflammatory, or early HER2-positive breast cancer (NeoSphere): a randomised multicentre, open-label, phase 2 trial,” The Lancet Oncology, vol. 13, pp. 25–32, 2012.
[19]  V. Guarneri, A. Frassoldati, A. Bottini, et al., “Final results of a phase II randomized trial of neoadjuvant anthracycline-taxane chemotherapy plus lapatinib, trastuzumab, or both in HER2-positive breast cancer (CHER-LOB trial),” Journal of Clinical Oncology, vol. 29, 2011.
[20]  W. Eiermann, J. Baselga, V. Semiglazov, et al., “Hormone-receptor status and likelihood of predicting pathological complete response (pCR) in the NOAH trial of neoadjuvant trastuzumab in patients (pts) with HER2-positive locally advanced breast cancer (LABC),” European Journal of Cancer, vol. 6, no. 7, p. 115, 2008.
[21]  N. L. Spector and K. L. Blackwell, “Understanding the mechanisms behind trastuzumab therapy for human epidermal growth factor receptor 2-positive breast cancer,” Journal of Clinical Oncology, vol. 27, no. 34, pp. 5838–5847, 2009.
[22]  P. R. Pohlmann, I. A. Mayer, and R. Mernaugh, “Resistance to trastuzumab in breast cancer,” Clinical Cancer Research, vol. 15, no. 24, pp. 7479–7491, 2009.
[23]  C. E. Geyer, J. Forster, D. Lindquist et al., “Lapatinib plus capecitabine for HER2-positive advanced breast cancer,” The New England Journal of Medicine, vol. 355, no. 26, pp. 2733–2743, 2006.
[24]  D. Cameron, M. Casey, M. Press et al., “A phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses,” Breast Cancer Research and Treatment, vol. 112, no. 3, pp. 533–543, 2008.
[25]  W. Xia, C. M. Gerard, L. Liu, N. M. Baudson, T. L. Ory, and N. L. Spector, “Combining lapatinib (GW572016), a small molecule inhibitor of ErbB1 and ErbB2 tyrosine kinases, with therapeutic anti-ErbB2 antibodies enhances apoptosis of ErbB2-overexpressing breast cancer cells,” Oncogene, vol. 24, no. 41, pp. 6213–6221, 2005.
[26]  G. E. Konecny, M. D. Pegram, N. Venkatesan et al., “Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells,” Cancer Research, vol. 66, no. 3, pp. 1630–1639, 2006.
[27]  M. Scaltriti, C. Verma, M. Guzman et al., “Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity,” Oncogene, vol. 28, no. 6, pp. 803–814, 2009.
[28]  T. Maruyama, K. Mimura, S. Izawa, et al., “Lapatinib enhances herceptin-mediated antibody-dependent cellular cytotoxicity by up-regulation of cell surface HER2 expression,” Anticancer Research, vol. 31, pp. 2999–3005, 2011.
[29]  K. L. Blackwell, H. J. Burstein, A. M. Storniolo et al., “Randomized study of lapatinib alone or in combination with trastuzumab in women with ErbB2-positive, trastuzumab-refractory metastatic breast cancer,” Journal of Clinical Oncology, vol. 28, no. 7, pp. 1124–1130, 2010.
[30]  K. L. Blackwell, H. J. Burstein, A. M. Storniolo, et al., “Overall survival benefit with lapatinib in combination with trastuzumab for patients with human epidermal growth factor receptor 2-positive metastatic breast cancer: final results from the EGF104900 Study,” Journal of Clinical Oncology, vol. 30, pp. 2585–2592, 2012.
[31]  K. A. Gelmon, F. Boyle, B. Kaufman, et al., “Open-label phase III randomized controlled trial comparing taxane-based chemotherapy (Tax) with lapatinib (L) or trastuzumab (T) as first-line therapy for women with HER2+ metastatic breast cancer: interim analysis (IA) of NCIC CTG MA.31/GSK EGF 108919,” in ASCO Annual Meeting, 2012.
[32]  http://www.gsk.com/media/pressreleases/2011/2011-pressrelease-614837.htm.
[33]  R. Nahta, M. C. Hung, and F. J. Esteva, “The HER-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells,” Cancer Research, vol. 64, no. 7, pp. 2343–2346, 2004.
[34]  J. Baselga, J. Cortes, S. B. Kim, et al., “Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer,” The New England Journal of Medicine, vol. 366, pp. 109–119, 2012.
[35]  A. Valachis, D. Mauri, N. P. Polyzos, et al., “Trastuzumab combined to neoadjuvant chemotherapy in patients with HER2-positive breast cancer: a systematic review and meta-analysis,” Breast, vol. 20, pp. 485–490, 2011.
[36]  A. Valachis, A. Nearchou, P. Lind, and D. Mauri, “Lapatinib, trastuzumab or the combination added to preoperative chemotherapy for breast cancer: a meta-analysis of randomized evidence,” Breast Cancer Research and Treatment, vol. 135, pp. 655–662, 2012.
[37]  H. M. Kuerer, L. A. Newman, T. L. Smith et al., “Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy,” Journal of Clinical Oncology, vol. 17, no. 2, pp. 460–469, 1999.
[38]  A. E. Ring, I. E. Smith, S. Ashley, L. G. Fulford, and S. R. Lakhani, “Oestrogen receptor status, pathological complete response and prognosis in patients receiving neoadjuvant chemotherapy for early breast cancer,” British Journal of Cancer, vol. 91, no. 12, pp. 2012–2017, 2004.
[39]  M. Kaufmann, G. N. Hortobagyi, A. Goldhirsch et al., “Recommendations from an international expert panel on the use of neoadjuvant (primary) systemic treatment of operable breast cancer: an update,” Journal of Clinical Oncology, vol. 24, no. 12, pp. 1940–1949, 2006.
[40]  V. Guarneri, K. Broglio, S. W. Kau et al., “Prognostic value of pathologic complete response after primary chemotherapy in relation to hormone receptor status and other factors,” Journal of Clinical Oncology, vol. 24, no. 7, pp. 1037–1044, 2006.
[41]  Y. C. Wang, G. Morrison, R. Gillihan, et al., “Different mechanisms for resistance to trastuzumab versus lapatinib in HER2-positive breast cancers—role of estrogen receptor and HER2 reactivation,” Breast Cancer Research, vol. 13, p. R121, 2011.
[42]  B. Dave, I. Migliaccio, M. C. Gutierrez et al., “Loss of phosphatase and tensin homolog or phosphoinositol-3 kinase activation and response to trastuzumab or lapatinib in human epidermal growth factor receptor 2 - Overexpressing locally advanced breast cancers,” Journal of Clinical Oncology, vol. 29, no. 2, pp. 166–173, 2011.
[43]  K. Berns, H. M. Horlings, B. T. Hennessy et al., “A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer,” Cancer Cell, vol. 12, no. 4, pp. 395–402, 2007.
[44]  Y. Nagata, K. H. Lan, X. Zhou et al., “PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients,” Cancer Cell, vol. 6, no. 2, pp. 117–127, 2004.
[45]  M. Barbareschi, L. V. Cuorvo, S. Girlando, et al., “PI3KCA mutations and/or PTEN loss in Her2-positive breast carcinomas treated with trastuzumab are not related to resistance to anti-Her2 therapy,” Virchows Archiv, vol. 461, pp. 129–139, 2012.
[46]  L. Wang, Q. Zhang, J. Zhang et al., “PI3K pathway activation results in low efficacy of both trastuzumab and lapatinib,” BMC Cancer, vol. 11, article 248, 2011.
[47]  M. A. Molina, R. Sáez, E. E. Ramsey et al., “NH2-terminal truncated HER-2 protein but not full-length receptor is associated with nodal metastasis in human breast cancer,” Clinical Cancer Research, vol. 8, no. 2, pp. 347–353, 2002.
[48]  M. Scaltriti, S. Chandarlapaty, L. Prudkin et al., “Clinical benefit of lapatinib-based therapy in patients with human epidermal growth factor receptor 2-positive breast tumors coexpressing the truncated p95HER2 receptor,” Clinical Cancer Research, vol. 16, no. 9, pp. 2688–2695, 2010.
[49]  M. Scaltriti, F. Rojo, A. Oca?a et al., “Expression of p95HER2, a truncated form of the HER2 receptor, and response to anti-HER2 therapies in breast cancer,” Journal of the National Cancer Institute, vol. 99, no. 8, pp. 628–638, 2007.
[50]  S. Loibl, J. Bruey, G. Von Minckwitz, et al., “Validation of p95 as a predictive marker for trastuzumab-based therapy in primary HER2-positive breast cancer: a translational investigation from the neoadjuvant GeparQuattro study,” in ASCO Annual Meeting, 2011.
[51]  M. A. Molina, J. Codony-Servat, J. Albanell, F. Rojo, J. Arribas, and J. Baselga, “Trastuzumab (Herceptin), a humanized anti-HER2 receptor monoclonal antibody, inhibits basal and activated HER2 ectodomain cleavage in breast cancer cells,” Cancer Research, vol. 61, no. 12, pp. 4744–4749, 2001.
[52]  I. Witzel, S. Loibl, G. Von Minckwitz et al., “Monitoring serum HER2 levels during neoadjuvant trastuzumab treatment within the GeparQuattro trial,” Breast Cancer Research and Treatment, vol. 123, no. 2, pp. 437–445, 2010.
[53]  I. Witzel, S. Loibl, G. von Minckwitz, et al., “Predictive value of HER2 serum levels in patients treated with lapatinib or trastuzumab—a translational project in the neoadjuvant GeparQuinto trial,” British Journal of Cancer, vol. 107, pp. 956–960, 2012.
[54]  C. Mazouni, A. Hall, K. Broglio et al., “Kinetics of serum HER-2/neu changes in patients with HER-2-positive primary breast cancer after initiation of primary chemotherapy,” Cancer, vol. 109, no. 3, pp. 496–501, 2007.
[55]  E. J. Jung, L. Santarpia, J. Kim, et al., “Plasma microRNA 210 levels correlate with sensitivity to trastuzumab and tumor presence in breast cancer patients,” Cancer, vol. 118, pp. 2603–2614, 2012.
[56]  K. Tamura, C. Shimizu, T. Hojo et al., “FcγR2A and 3A polymorphisms predict clinical outcome of trastuzumab in both neoadjuvant and metastatic settings in patients with HER2-positive breast cancer,” Annals of Oncology, vol. 22, no. 6, pp. 1302–1307, 2011.
[57]  F. J. Esteva, J. Wang, F. Lin et al., “CD40 signaling predicts response to preoperative trastuzumab and concomitant paclitaxel followed by 5-fluorouracil, epirubicin, and cyclophosphamide in HER-2-overexpressing breast cancer,” Breast Cancer Research, vol. 9, no. 6, p. R87, 2007.
[58]  L. Gianni, W. Eiermann, L. Pusztai, et al., “Biomarkers as potential predictors of pathologic complete response (pCR) in the NOAH trial of neoadjuvant trastuzumab in patients (pts) with HER2-positive locally advanced breast cancer (LABC),” Journal of Clinical Oncology, vol. 26, no. 15S, p. 8s, 2008.
[59]  A. Berriolo-Riedinger, C. Touzery, J. M. Riedinger et al., “[18F]FDG-PET predicts complete pathological response of breast cancer to neoadjuvant chemotherapy,” European Journal of Nuclear Medicine and Molecular Imaging, vol. 34, no. 12, pp. 1915–1924, 2007.
[60]  C. Rousseau, A. Devillers, C. Sagan et al., “Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F]fluorodeoxyglucose positron emission tomography,” Journal of Clinical Oncology, vol. 24, no. 34, pp. 5366–5372, 2006.
[61]  J. Schwarz-Dose, M. Untch, R. Tiling et al., “Monitoring primary systemic therapy of large and locally advanced breast cancer by using sequential positron emission tomography imaging with [18F]fluorodeoxyglucose,” Journal of Clinical Oncology, vol. 27, no. 4, pp. 535–541, 2009.
[62]  X. Cheng, Y. Li, B. Liu, et al., “18F-FDG PET/CT and PET for evaluation of pathological response to neoadjuvant chemotherapy in breast cancer: a meta-analysis,” Acta Radiologica, vol. 53, pp. 615–627, 2012.
[63]  O. Humbert, A. Berriolo-Riedinger, J. M. Riedinger, et al., “Changes in 18F-FDG tumor metabolism after a first course of neoadjuvant chemotherapy in breast cancer: influence of tumor subtypes,” Annals of Oncology, vol. 23, pp. 2572–2577, 2012.
[64]  A. Cochet, K. Kerrou, J. M. Nabholtz, et al., “An open-label randomized, multicenter, phase II study on neoadjuvant treatment with trastuzumab plus docetaxel versus trastuzumab plus docetaxel plus bevacizumab according to positron emission tomography (PET) value modification in aptients with early stage HER2-positive breast cancer (AVATAXHER),” in ASCO Annual Meeting, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133