全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Efficacy of Goshajinkigan for Oxaliplatin-Induced Peripheral Neuropathy in Colorectal Cancer Patients

DOI: 10.1155/2013/139740

Full-Text   Cite this paper   Add to My Lib

Abstract:

Objective. To evaluate the efficacy of Goshajinkigan for oxaliplatin-induced peripheral neuropathy in colorectal cancer patients. Patients. Colorectal cancer patients ( ) who received ≥4 weeks of Goshajinkigan for oxaliplatin-induced peripheral neuropathy during chemotherapy at Kyoto Prefectural University of Medicine were (Goshajinkigan group) compared to 44 patients who had not received Goshajinkigan during the same period (non-Goshajinkigan group). Main Outcome Measures. The effect of Goshajinkigan was graded as curative, effective, stabilizing, or deleterious. The relationships between the grade of peripheral neuropathy and the dose of oxaliplatin in the Goshajinkigan and non-Goshajinkigan groups were evaluated. Results. The effect of Goshajinkigan on peripheral neuropathy in the Goshajinkigan group was curative, effective, stabilizing, and deleterious in 3.4, 20.7, 69.0, and 6.9% of patients, compared to the effect in the non-Goshajinkigan group (4.5, 15.9, 45.5, and 34.1%). The ratio of deleterious effects was significantly different between these two groups ( ). A Kaplan-Meier analysis in relation to the cumulative dose of oxaliplatin showed that the incidence of grade 3 peripheral neuropathy tended to be less in the Goshajinkigan group ( ). There were no significant differences in time to treatment failure and severe adverse events between these two groups. Conclusions. Goshajinkigan prevented exacerbation of oxaliplatin-induced peripheral neuropathy. This trial is registered with UMIN000009956 1. Introduction Oxaliplatin-based chemotherapy regimens such as XELOX (CapeOX) and FOLFOX have gained acceptance worldwide as first-line therapies in advanced or recurrent colorectal cancer; subsequently, the incidence of the often intractable oxaliplatin-induced peripheral neuropathy also continues to rapidly increase [1]. Peripheral neuropathy occurs in approximately 80% of the patients receiving oxaliplatin-based chemotherapy. Grade 3 peripheral neuropathy affects approximately 15% of the patients after a cumulative dose of 800?mg/m2 and requires discontinuation of therapy [2]. The unique direct effect of oxaliplatin on nerve excitability has been attributed to one of its metabolites, oxalate, which is a calcium chelator that alters voltage-gated Na+ channels. In experimental models, acute dysfunction of Na+ channels is correlated with axonal loss and degeneration [3]. Furthermore, cumulative neurotoxicity may be related to direct toxicity of the dorsal root ganglia [4]. The hallmarks of oxaliplatin-induced peripheral neuropathy are paresthesia and

References

[1]  J. Cassidy, S. Clarke, E. Díaz-Rubio et al., “Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/folinic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer,” Journal of Clinical Oncology, vol. 26, no. 12, pp. 2006–2012, 2008.
[2]  A. Grothey, “Oxaliplatin-safety profile: neurotoxicity,” Seminars in Oncology, vol. 30, no. 4, pp. 5–13, 2003.
[3]  L. M. Pasetto, D. 'Andrea MR, A. A. Brandes, E. Rossi, and S. Monfardini, “The development of platinum compounds and their possible combination,” Critical Reviews in Oncology/Hematology, vol. 59, no. 1, pp. 159–168, 2006.
[4]  S. B. Park, D. Goldstein, C. S. Lin, A. V. Krishnan, M. L. Friedlander, and M. C. Kiernan, “Acute abnormalities of sensory nerve function association with oxaliplatin-induced neurotoxicity,” Journal of Clinical Oncology, vol. 27, no. 8, pp. 1243–1249, 2009.
[5]  E. Gamelin, L. Gamelin, L. Bossi, and S. Quasthoff, “Clinical aspects and molecular basis of oxaliplatin neurotoxicity: current management and development of preventive measures,” Seminars in Oncology, vol. 29, no. 5, pp. 21–33, 2002.
[6]  Japan Society of Pain Clinicians, Ed., The Committee for the Guidelines for the Pharmacologic Management of Neuropathic Pain of JSPC, Shinko Trading, Tokyo, Japan, 1st edition, 2011.
[7]  A. Caraceni, E. Zecca, C. Bonezzi et al., “Gabapentin for neuropathic cancer pain: a randomized controlled trial from the gabapentin cancer pain study group,” Journal of Clinical Oncology, vol. 22, no. 14, pp. 2909–2917, 2004.
[8]  D. Arbaiza and O. Vidal, “Tramadol in the treatment of neuropathic cancer pain: a double-blind, placebo-controlled study,” Clinical Drug Investigation, vol. 27, no. 1, pp. 75–83, 2007.
[9]  B. Qin and Y. Sato, “Effectiveness of the traditional Chinese (Kampo) medicine in diabetic peripheral neuropathy,” Nagoya Journal of Health, Physical Fitness and Sports, vol. 27, pp. 55–61, 2004.
[10]  Y. Suzuki, K. Goto, A. Ishige, Y. Komatsu, and J. Kamei, “Antinociceptive effect of Gosha-jinki-gan, a Kampo medicine, in streptozotocin-induced diabetic mice,” Japanese Journal of Pharmacology, vol. 79, no. 2, pp. 169–175, 1999.
[11]  Y. Suzuki, K. Goto, A. Ishige, Y. Komatsu, and J. Kamei, “Antinociceptive mechanism of Gosha-jinki-gan in streptozotocin-induced diabetic animals: role of nitric oxide in the periphery,” Japanese Journal of Pharmacology, vol. 79, no. 3, pp. 387–391, 1999.
[12]  S. Ushio, N. Egashira, H. Sada et al., “Goshajinkigan reduces oxaliplatin-induced peripheral neuropathy without affecting anti-tumour efficacy in rodents,” European Journal of Cancer, vol. 48, no. 9, pp. 1407–1413, 2012.
[13]  A. Hosokawa, K. Ogawa, T. Ando et al., “Preventive effect of traditional Japanese medicine on neurotoxicity of FOLFOX for metastatic colorectal cancer: a multicenter retrospective study,” Anticancer Research, vol. 32, no. 7, pp. 2545–2550, 2012.
[14]  T. Kono, H. Mishima, M. Shimada, S. Morita, and J. Sakamoto, “Preventive effect of Goshajinkigan on peripheral neurotoxicity of FOLFOX therapy: a placebo-controlled double-blind randomized phase II study (the GONE study),” Japanese Journal of Clinical Oncology, vol. 39, no. 12, pp. 847–849, 2009.
[15]  T. Kono, N. Mamiya, N. Chisato, et al., “Efficacy of Goshajinkigan for peripheral neurotoxicity of oxaliplatin in patients with advanced or recurrent colorectal cancer,” Evidence-Based Complementary and Alternative Medicine, vol. 2011, Article ID 418481, 8 pages, 2011.
[16]  M. Nishioka, M. Shimada, N. Kurita et al., “The Kampo medicine, Goshajinkigan, prevents neuropathy in patients treated by FOLFOX regimen,” International Journal of Clinical Oncology, vol. 16, no. 4, pp. 322–327, 2011.
[17]  L. Sobin, M. Gospodarowicz, and C. Wittekind, Eds., TNM Classification of Malignant Tumours (Internatonal Union Against Cancer), Wiley Blackwell, Hoboken, NJ, USA, 7th edition, 2012.
[18]  M. M. Oken, R. H. Creech, D. C. Tormey et al., “Toxicity and response criteria of the Eastern cooperative oncology group,” The American Journal of Clinical Oncology, vol. 5, no. 6, pp. 649–655, 1982.
[19]  National Cancer Institute, “Common terminology criteria for adverse events (CTCAE) v4.0,” 2009, http://evs.nci.nih.gov/ftp1/CTCAE/About.html.
[20]  C. Tournigand, A. Cervantes, A. Figer et al., “OPTIMOX1: a randomized study of FOLFOX4 or FOLFOX7 with oxaliplatin in a stop-and-go fashion in advanced colorectal cancer—a GERCOR study,” Journal of Clinical Oncology, vol. 24, no. 3, pp. 394–400, 2006.
[21]  L. Gamelin, M. Boisdron-Celle, R. Delva et al., “Prevention of oxaliplatin-related neurotoxicity by calcium and magnesium infusions: a retrospective study of 161 patients receiving oxaliplatin combined with 5-fluorouracil and leucovorin for advanced colorectal cancer,” Clinical Cancer Research, vol. 10, no. 12 I, pp. 4055–4061, 2004.
[22]  S. Cascinu, V. Catalano, L. Cordella et al., “Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial,” Journal of Clinical Oncology, vol. 20, no. 16, pp. 3478–3483, 2002.
[23]  R. H. Wilson, T. Lehky, R. R. Thomas, M. G. Quinn, M. K. Floeter, and J. L. Grem, “Acute oxaliplatin-induced peripheral nerve hyperexcitability,” Journal of Clinical Oncology, vol. 20, no. 7, pp. 1767–1774, 2002.
[24]  Y. Kanbayashi, T. Hosokawa, K. Okamoto et al., “Statistical identification of predictors for peripheral neuropathy associated with administration of bortezomib, taxanes, oxaliplatin or vincristine using ordered logistic regression analysis,” Anti-Cancer Drugs, vol. 21, no. 9, pp. 877–881, 2010.
[25]  H. Kaku, S. Kumagai, H. Onoue et al., “Objective evaluation of the alleviating effects of Goshajinkigan on peripheral neuropathy induced by paclitaxel/carboplatin therapy: a multicenter collaborative study,” Experimental and Therapeutic Medicine, vol. 3, no. 1, pp. 60–65, 2012.
[26]  A. de Gramont, A. Figer, M. Seymour et al., “Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer,” Journal of Clinical Oncology, vol. 18, no. 16, pp. 2938–2947, 2000.
[27]  T. André, C. Boni, M. Navarro et al., “Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial,” Journal of Clinical Oncology, vol. 27, no. 19, pp. 3109–3116, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133