Mast cells are regarded as complex and multifunctional cells, playing a significant role in immunopathology and a substantial role in tumor angiogenesis. Angiogenesis is a complex process that is tightly regulated by various growth factors in which mast cells act directly by releasing angiogenic factors and henceforth promoting tumor growth and metastasis. The aim of this study is to evaluate the number of mast cells in tissue sections of oral squamous cell carcinoma (OSCC) in comparison with normal mucosa. A total of 40 cases (20 OSCC and 20 normal mucosa) were stained with 1% toluidine blue and the quantitative analysis was done by using light microscope under 400x magnification. A significant increase in the mast cell count was observed in the sections of OSCC when compared to normal mucosa suggesting their contributing role in tumor growth and progression. 1. Introduction Mast cells are normally present in small numbers in the connective tissue of all organs and more particularly (around blood vessels and nerves) in the dermal layer of skin, ranging from 5 to 15?μm in diameter, and in histologic sections often appear ovoid, tadpole, or spindle shaped cells with cytoplasmic granules of 0.2 to 0.5?cm in size. They exert their influence locally and systemically by releasing a variety of potent mediators like histamine, leukotrienes, and cytokines through degranulation and cause neovascularization by producing angiogenic mediators such as fibroblast growth factor (FGF), transforming growth factor-β (TGF), tumor necrosis factor-α (TNF), and vascular endothelial growth factor (VEGF). They occur in various pathological states and also in some benign and malignant tumors. An attempt has been made to quantitatively estimate the number of mast cells in OSCC and to signify their role in tumor growth and progression [1–3]. 2. Materials and Methods 20 paraffin embedded specimens of OSCC of age groups from 30–80 years with no systemic illness but having the habit of smoking and alcohol consumption for a period of 5–10 years were retrieved from the archives of the department of oral pathology, among which seven cases were of well differentiated squamous cell carcinoma ( ; females = 4, males = 3) and 13 were moderately differentiated squamous cell carcinoma ( ; 4 = females, 9 = males). 20 normal oral mucosal biopsies from age groups of 15–20 years with no systemic illness were obtained from 20 adult patients undergoing extraction for orthodontic treatment. Serial sections of 5?μm thickness were made from paraffin embedded tissue blocks using semiautomatic microtome
References
[1]
K. D. Stone, C. Prussin, and D. D. Metcalfe, “IgE, mast cells, basophils, and eosinophils,” Journal of Allergy and Clinical Immunology, vol. 125, no. 2, supplement 2, pp. S73–S80, 2010.
[2]
T. C. Theoharides and P. Conti, “Mast cells: the JEKYLL and HYDE of tumor growth,” Trends in Immunology, vol. 25, no. 5, pp. 235–241, 2004.
[3]
P. Pansrikaew, C. Cheewakriangkrai, M. Taweevisit, S. Khunamornpong, and S. Siriaunkgul, “Correlation of mast cell density, tumor angiogenesis, and clinical outcomes in patients with endometrioid endometrial cancer,” Asian Pacific Journal of Cancer Prevention, vol. 11, no. 3, pp. 623–626, 2010.
[4]
R. Sudhakar, V. Ramesh, P. D. Balamurali, O. Nirima, and B. Premalatha, “Karthikshree. Incidence of mast cells in oral inflammatory lesions: a pilot study,” Journal of Oral and Maxillofacial Pathology, vol. 9, no. 1, pp. 12–15, 2005.
[5]
M. R. Ankle, D. K. Alka, and R. Nayak, “Mast cells are increased in leukoplakia, oral submucous fibrosis, oral lichen planus and oral squamous cell carcinoma,” Journal of Oral and Maxillofacial Pathology, vol. 11, no. 1, pp. 18–22, 2007.
[6]
R. Kamal, P. Dahiya, S. Palaskar, and V. P. Shetty, “Comparative analysis of mast cell count in normal oral mucosa and oral pyogenic granuloma,” Journal of Clinical and Experimental Dentistry, vol. 3, no. 1, pp. e1–e4, 2011.
[7]
N. Mohtasham, S. Babakoohi, J. S. Nejad et al., “Mast cell density and angiogenesis in oral dysplastic epithelium and low- and high-grade oral squamous cell carcinoma,” Acta Odontologica Scandinavica, vol. 68, no. 5, pp. 300–304, 2010.
[8]
L. M. Coussens and Z. Werb, “Matrix metalloproteinases and the development of cancer,” Chemistry and Biology, vol. 3, no. 11, pp. 895–904, 1996.
[9]
T. H. Vu, J. M. Shipley, G. Bergers et al., “MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypetrophic chondrocytes,” Cell, vol. 93, no. 3, pp. 411–422, 1998.
[10]
L. M. Coussens, W. W. Raymond, G. Bergers et al., “Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis,” Genes and Development, vol. 13, no. 11, pp. 1382–1397, 1999.
[11]
G. ?. Elpek, T. Gelen, N. H. Aksoy et al., “The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus,” Journal of Clinical Pathology, vol. 54, no. 12, pp. 940–944, 2001.
[12]
P. J. Polverini, “The pathophysiology of angiogenesis,” Critical Reviews in Oral Biology and Medicine, vol. 6, no. 3, pp. 230–247, 1995.
[13]
D. Ribatti and E. Crivellato, “Chapter 4 the controversial role of mast cells in tumor growth,” International Review of Cell and Molecular Biology, vol. 275, pp. 89–131, 2009.
[14]
S. Rakesh, M. J. R. B. Vidya, and V. V. Savithri, “Analysis of mast cell counts in oral leukoplakia,” Oral & Maxillofacial Pathology Journal, vol. 3, no. 1, pp. 181–185, 2012.