Background. Obesity is characterized by liver steatosis, chronic inflammation, and increased liver enzymes, that is, gamma-glutamyltransferase (GGT) and alanine aminotransferase (ALT), markers for nonalcoholic fatty liver disease (NAFLD) and liver fat content. Increased platelet counts (PCs) are associated with inflammatory conditions and are a valuable biomarker of the degree of fibrosis in NAFLD. We investigated alterations in PC, GGT, and ALT after biliopancreatic diversion with duodenal switch (BPD-DS) and Roux-en-Y gastric bypass (RYGBP). Methods. Ten morbidly obese patients (body mass index, BMI: ?kg/m2) who underwent BPD-DS were evaluated preoperatively (baseline) and 1 year (1st followup) and 3 years (2nd followup) after surgery and compared with 21 morbidly obese patients (BMI: ?kg/m2) who underwent RYGBP. Results. Over the 3 years of followup, changes in BPD-DS and RYGBP patients (BPD-DS/RYGBP) were as follows: BMI (?44%/?24%), GGT (?63%/?52%), and ALT (?48%/?62%). PC decreased (?21%) statistically significantly only in BPD-DS patients. Conclusions. Morbidly obese patients treated by RYGBP or BPD-DS show sustained reductions in BMI, ALT, and GGT. The decrease in PC and liver enzymes after BPD-DS may reflect a more pronounced decrease of liver-fat-content-related inflammation and, as a result, a lowered secondary thrombocytosis. 1. Introduction Bariatric surgery has become an effective treatment for obesity, also reducing the onset of type 2 diabetes mellitus (T2DM) [1] as well as inducing remission [2] and reducing cardiovascular mortality and mortality in general [3, 4]. Obesity is a chronic condition characterized by elevated inflammatory markers [5–7] and is associated with nonalcoholic fatty liver disease (NAFLD) [8, 9]. Serum gamma-glutamyltransferase (GGT) and alanine aminotransferase (ALT) are markers of NAFLD and of liver fat content [10, 11]. Increased platelet counts have been observed in conditions with chronic inflammation as well as in obesity, probably due to secondary thrombocytosis [12–14]. In more advanced stages of NAFLD, with portal hypertension and splenomegaly, reduced platelet counts have been observed [15]. There is a linear association between decreased platelet counts and increased fibrosis in the histopathology of liver biopsies, which may indicate that platelet counts might be an important biomarker of the degree of fibrosis in NAFLD patients. Platelet count is a simple, easy to perform, cost-effective, and accurate surrogate marker for predicting fibrosis severity in NAFLD patients [16]. Bariatric surgery improves
References
[1]
L. Sj?str?m, A. K. Lindroos, M. Peltonen et al., “Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery,” The New England Journal of Medicine, vol. 351, no. 26, pp. 2683–2693, 2004.
[2]
S. E. Greenway, F. L. Greenway III, and S. Klein, “Effects of obesity surgery on non-insulin-dependent diabetes mellitus,” Archives of Surgery, vol. 137, no. 10, pp. 1109–1117, 2002.
[3]
L. Sj?str?m, K. Narbro, C. D. Sj?str?m et al., “Effects of bariatric surgery on mortality in Swedish obese subjects,” The New England Journal of Medicine, vol. 357, no. 8, pp. 741–752, 2007.
[4]
T. D. Adams, R. E. Gress, S. C. Smith et al., “Long-term mortality after gastric bypass surgery,” The New England Journal of Medicine, vol. 357, no. 8, pp. 753–761, 2007.
[5]
I. R. Fisch and S. H. Freedman, “Smoking, oral contraceptives, and obesity. Effects on white blood cell count,” Journal of the American Medical Association, vol. 234, no. 5, pp. 500–506, 1975.
[6]
M. Visser, L. M. Bouter, G. M. McQuillan, M. H. Wener, and T. B. Harris, “Elevated C-reactive protein levels in overweight and obese adults,” Journal of the American Medical Association, vol. 282, no. 22, pp. 2131–2135, 1999.
[7]
I. Lemieux, A. Pascot, D. Prud'homme et al., “Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 21, no. 6, pp. 961–967, 2001.
[8]
M. Machado and H. Cortez-Pinto, “Non-alcoholic fatty liver disease and insulin resistance,” European Journal of Gastroenterology and Hepatology, vol. 17, no. 8, pp. 823–826, 2005.
[9]
G. Marchesini and M. Babini, “Nonalcoholic fatty liver disease and the metabolic syndrome,” Minerva Cardioangiologica, vol. 54, no. 2, pp. 229–239, 2006.
[10]
H. Bian, “The relationship between liver fat content and insulin resistance and beta cell function in individuals with different status of glucose metabolism,” EASD Abstract, vol. 2010, Article ID 602, 2010.
[11]
J. B. Dixon, P. S. Bhathal, and P. E. O'Brien, “Weight loss and non-alcoholic fatty liver disease: falls in gamma-glutamyl transferase concentrations are associated with histologic improvement,” Obesity Surgery, vol. 16, no. 10, pp. 1278–1286, 2006.
[12]
B. Andreasson, P. Johansson, and J. Samuelsson, “Essential thrombocytosis: a criteria diagnosis. Important to differentiate from reactive/secondary thrombocytosis,” Lakartidningen, vol. 106, pp. 110–113, 2009.
[13]
A. I. Schafer, “Thrombocytosis,” The New England Journal of Medicine, vol. 350, no. 12, pp. 1211–1219, 2004.
[14]
R. M. Dallal, J. Leighton, and A. Trang, “Analysis of leukopenia and anemia after gastric bypass surgery,” Surgery for Obesity and Related Diseases, vol. 8, no. 2, pp. 164–168, 2012.
[15]
Y. F. Liaw, D. I. Tai, C. M. Chu, and T. J. Chen, “The development of cirrhosis in patients with chronic type B hepatitis: a prospective study,” Hepatology, vol. 8, no. 3, pp. 493–496, 1988.
[16]
M. Yoneda, H. Fujii, Y. Sumida et al., “Platelet count for predicting fibrosis in nonalcoholic fatty liver disease,” Journal of Gastroenterology, vol. 46, no. 11, pp. 1300–1306, 2011.
[17]
R. A. Weiner, “Surgical treatment of non-alcoholic steatohepatitis and non-alcoholic fatty liver disease,” Digestive Diseases, vol. 28, no. 1, pp. 274–279, 2010.
[18]
I. Sak?ak, M. F. Av?ar, E. O. Hamamci et al., “Comparison of early and late changes in immunoglobulins and acute phase reactants after laparoscopic adjustable gastric banding in patients with morbid obesity,” Obesity Surgery, vol. 20, no. 5, pp. 610–615, 2010.
[19]
H. E. Johansson, A. Haenni, F. Anders Karlsson et al., “Bileopancreatic diversion with duodenal switch lowers both early and late phases of glucose, insulin and proinsulin responses after meal,” Obesity Surgery, vol. 20, no. 5, pp. 549–558, 2010.
[20]
H.-E. Johansson, A. Haenni, M. Ohrvall, S. Magnus, and Z. Bj?rn, “Alterations in proinsulin and insulin dynamics, HDL cholesterol and ALT after gastric bypass surgery. A 42-Months follow-up study,” Obesity Surgery, vol. 19, no. 5, pp. 601–607, 2009.
[21]
H. Buchwald and J. N. Buchwald, “Evolution of operative procedures for the management of morbid obesity 1950–2000,” Obesity Surgery, vol. 12, no. 5, pp. 705–717, 2002.
[22]
M. F. Buckley, J. W. James, D. E. Brown et al., “A novel approach to the assessment of variations in the human platelet count,” Thrombosis and Haemostasis, vol. 83, no. 3, pp. 480–484, 2000.
[23]
Y. H. Lee and R. E. Pratley, “The evolving role of inflammation in obesity and the metabolic syndrome,” Current Diabetes Reports, vol. 5, no. 1, pp. 70–75, 2005.
[24]
B. E. Wisse, “The inflammatory syndrome: the role of adipose tissue cytokines in metabolic disorders linked to obesity,” Journal of the American Society of Nephrology, vol. 15, no. 11, pp. 2792–2800, 2004.
[25]
D. Samocha-Bonet, D. Justo, O. Rogowski et al., “Platelet counts and platelet activation markers in obese subjects,” Mediators of Inflammation, vol. 2008, Article ID 834153, 6 pages, 2008.
[26]
C. E. Collins and D. S. Rampton, “Platelets in inflammatory bowel disease: pathogenetic role and therapeutic implications,” Alimentary Pharmacology and Therapeutics, vol. 11, no. 2, pp. 237–247, 1997.
[27]
G. Anfossi, I. Russo, and M. Trovati, “Platelet dysfunction in central obesity,” Nutrition, Metabolism and Cardiovascular Diseases, vol. 19, no. 6, pp. 440–449, 2009.
[28]
G. Davì, M. T. Guagnano, G. Ciabattoni et al., “Platelet activation in obese women: role of inflammation and oxidant stress,” Journal of the American Medical Association, vol. 288, no. 16, pp. 2008–2014, 2002.
[29]
T. Poynard, M. F. Yuen, V. Ratziu, and C. Lung Lai, “Viral hepatitis C,” The Lancet, vol. 362, no. 9401, pp. 2095–2100, 2003.