全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Indices of Abdominal Adiposity and Cardiorespiratory Fitness Test Performance in Middle-School Students

DOI: 10.1155/2013/912460

Full-Text   Cite this paper   Add to My Lib

Abstract:

Background. Previous research suggests that use of BMI as a screening tool to assess health in youth has limitations. Valid alternative measures to assess body composition are needed to accurately identify children who are aerobically fit, which is an indicator of health status. The purpose of this study was to examine the associations between select anthropometric measures and cardiorespiratory fitness test performance in middle-school students. Methods. Participants included 134 students (65 boys and 69 girls) recruited from the 6th, 7th, and 8th grades. Anthropometric measures consisted of BMI, waist circumference (WC), waist-to-height ratio (WHtR), and percent body fat estimated from two-site skinfolds (%BF-SKF), as well as the hand-held OMRON BIA device (%BF-BIA). Cardiorespiratory fitness tests included the one-mile run and PACER test. Data were collected on four separate testing days during the students’ physical education classes. Results. There were statistically significant moderate correlations between the %BF estimations, WHtR, and cardiorespiratory fitness test scores in both genders . BMI at best only displayed weak correlations with the cardiorespiratory fitness test scores. Conclusions. The results suggest that alternative measures such as %BF-SKF, %BF-BIA, and WHtR may be more valid indicators of youth aerobic fitness lending to their preferred use over BMI. 1. Introduction The current pediatric obesity epidemic manifests concerns for adverse cardiovascular risk factors among overweight youth. However, Eisenmann et al. [1], using body mass index (BMI) as the marker of adiposity, found that youth in both the low- and high-BMI categories were associated with a more favorable cardiovascular disease (CVD) risk-factor profile than individuals whose BMIs were in the “healthy” range. This paradox leads to a significant issue in assessing health and fitness in youth when using BMI. Research has also suggested that along with body composition, aerobic fitness must also be considered to accurately assess health status in a population. Lee et al. [2] found that unfit lean men had a higher risk of cardiovascular disease and all-cause mortality than fit but overweight men. These findings suggest that fitness offers some protection against CVD risk even if the individual is overweight. Similar results have been reported for the female population [3]. Using skinfold thickness as the measure of body fatness and stratifying youth into high-fat/high-fitness, high-fat/low-fitness, low-fat/high-fitness, and low-fat/low-fitness groups, it was found that

References

[1]  J. C. Eisenmann, G. J. Welk, M. Ihmels, and J. Dollman, “Fatness, fitness, and cardiovascular disease risk factors in children and adolescents,” Medicine and Science in Sports and Exercise, vol. 39, no. 8, pp. 1251–1256, 2007.
[2]  C. D. Lee, S. N. Blair, and A. S. Jackson, “Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men,” American Journal of Clinical Nutrition, vol. 69, no. 3, pp. 373–380, 1999.
[3]  X. Sui, S. P. Hooker, and I. M. Lee, “A prospective study of cardiorespiratory fitness and and risk of type 2 diabetes in women,” Diabetes Care, vol. 31, no. 3, pp. 550–555, 2007.
[4]  J. C. Eisenmann, G. J. Welk, E. E. Wickel, and S. N. Blair, “Stability of variables associated with the metabolic syndrome from adolescence to adulthood: The Aerobics Center longitudinal study,” American Journal of Human Biology, vol. 16, no. 6, pp. 690–696, 2004.
[5]  R. Jago, K. L. Drews, R. G. McMurray et al., “Fatness, fitness, and cardiometabolic risk factors among sixth-grade youth,” Medicine and Science in Sports and Exercise, vol. 42, no. 8, pp. 1502–1510, 2010.
[6]  J. H. Himes, “Challenges of accurately measuring and using BMI and other indicators of obesity in children,” Pediatrics, vol. 124, supplement 1, pp. S3–S22, 2009.
[7]  J. A. Morrison, B. A. Barton, F. M. Biro, S. R. Daniels, and D. L. Sprecher, “Overweight, fat patterning, and cardiovascular disease risk factors in black and white boys,” Journal of Pediatrics, vol. 135, no. 4, pp. 451–457, 1999.
[8]  S. Caprio, L. D. Hyman, C. Limb et al., “Central adiposity and its metabolic correlates in obese adolescent girls,” American Journal of Physiology, vol. 269, no. 1, pp. E118–E126, 1995.
[9]  S. C. Savva, M. Tornaritis, M. E. Savva et al., “Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index,” International Journal of Obesity, vol. 24, no. 11, pp. 1453–1458, 2000.
[10]  W. W. Wong, J. E. Stuff, N. F. Butte, E. O'Brian Smith, and K. J. Ellis, “Estimating body fat in african american and white adolescent girls: a comparison of skinfold-thickness equations with a 4-compartment criterion model,” American Journal of Clinical Nutrition, vol. 72, no. 2, pp. 348–354, 2000.
[11]  A. Cable, D. C. Nieman, M. Austin, E. Hogen, and A. C. Utter, “Validity of leg-to-leg bioelectrical impedance measurement in males,” Journal of Sports Medicine and Physical Fitness, vol. 41, no. 3, pp. 411–414, 2001.
[12]  S. A. Jebb, T. J. Cole, D. Doman, P. R. Murgatroyd, and A. M. Prentice, “Evaluation of the novel Tanita body-fat analyser to measure body composition by comparison with a four-compartment model,” British Journal of Nutrition, vol. 83, no. 2, pp. 115–122, 2000.
[13]  M. Ihmels, G. J. Welk, J. J. McClain, and J. Schaben, “The reliability and convergent validity of field tests of body composition in young adolescents,” Journal of Physical Activity and Health, vol. 3, supplement 2, pp. S67–S77, 2006.
[14]  R. Bassali, J. L. Waller, B. Gower, J. Allison, and C. L. Davis, “Utility of waist circumference percentile for risk evaluation in obese children,” International Journal of Pediatric Obesity, vol. 5, no. 1, pp. 97–101, 2010.
[15]  C. Maffeis, A. Pietrobelli, A. Grezzani, S. Provera, and L. Tatò, “Waist circumference and cardiovascular risk factors in prepubertal children,” Obesity Research, vol. 9, no. 3, pp. 179–187, 2001.
[16]  L. Elizondo-Montemayor, M. Serrano-González, P. A. Ugalde-Casas, H. Bustamante-Careaga, and C. Cuello-García, “Waist-to-height: cutoff matters in predicting metabolic syndrome in Mexican children,” Metabolic Syndrome and Related Disorders, vol. 9, no. 3, pp. 183–190, 2011.
[17]  J. S. Mokha, S. R. Srinivasan, P. DasMahapatra et al., “Utility of waist-to-height ratio in assessing the status of central obesity and related cardiometabolic risk profile among normal weight and overweight/obese children: The Bogalusa Heart Study,” BMC Pediatrics, vol. 10, no. 3, article 73, 2010.
[18]  H. J. Schneider, H. Glaesmer, J. Klotsche et al., “Accuracy of anthropometric indicators of obesity to predict cardiovascular risk,” The Journal of Clinical Endocrinology and Metabolism, vol. 92, no. 2, pp. 589–594, 2007.
[19]  S. N. Blair, H. W. Kohl, C. E. Barlow, R. S. Paffenbarger, L. W. Gibbons, and C. A. Macera, “Changes in physical fitness and all-cause mortality: a prospective study of healthy and unhealthy men,” Journal of the American Medical Association, vol. 273, no. 14, pp. 1093–1098, 1995.
[20]  C. Boreham and C. Riddoch, “The physical activity, fitness and health of children,” Journal of Sports Sciences, vol. 19, no. 12, pp. 915–929, 2001.
[21]  W. Zhu, S. A. Plowman, and Y. Park, “A primer-test centered equating method for setting cut-off scores,” Research Quarterly for Exercise and Sport, vol. 81, no. 4, pp. 400–409, 2010.
[22]  K. J. Cureton, M. A. Sloniger, J. P. O'Bannon, D. M. Black, and W. P. McCormack, “A generalized equation for prediction of VO2 peak from 1-mile run/walk performance,” Medicine and Science in Sports and Exercise, vol. 27, no. 3, pp. 445–451, 1995.
[23]  G. J. Welk, K. R. Laurson, J. C. Eisenmann, and K. J. Cureton, “Development of youth aerobic-capacity standards using receiver operating characteristic curves,” American Journal of Preventative Medicine, vol. 41, supplement 2, pp. S111–S116, 2011.
[24]  J. L. Mesa, F. B. Ortega, J. R. Ruiz et al., “Anthropometric determinants of a clustering of lipid-related metabolic risk factors in overweight and non-overweight adolescents—influence of cardiorespiratory fitness: The AVENA study,” Annals of Nutrition and Metabolism, vol. 50, no. 6, pp. 519–527, 2006.
[25]  D. M. Cooper, D. Nemet, and P. Galassetti, “Exercise, stress, and inflammation in the growing child: from the bench to the playground,” Current Opinion in Pediatrics, vol. 16, no. 3, pp. 286–292, 2004.
[26]  M. H. Slaughter, T. G. Lohman, R. A. Boileau et al., “Skinfold equations for estimations of body fatness in children and youth,” Human Biology, vol. 60, no. 5, pp. 709–723, 1988.
[27]  R. M. Malina, C. Bouchard, and O. Bar-Or, Growth, Maturation, and Physical Activity, Human Kinetics, Champaign, Ill, USA, 2nd edition, 2004.
[28]  J. Parizkova, “Total body fat and skinfold thickness in children,” Metabolism, vol. 10, pp. 794–807, 1961.
[29]  C. M. De Ridder, R. W. De Boer, J. C. Seidell et al., “Body fat distribution in pubertal girls quantified by magnetic resonance imaging,” International Journal of Obesity, vol. 16, no. 6, pp. 443–449, 1992.
[30]  H. D. McCarthy and M. Ashwell, “A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message—'keep your waist circumference to less than half your height',” International Journal of Obesity, vol. 30, no. 6, pp. 988–992, 2006.
[31]  S. R. Daniels, J. A. Morrison, D. L. Sprecher, P. Khoury, and T. R. Kimball, “Association of body fat distribution and cardiovascular risk factors in children and adolescents,” Circulation, vol. 99, no. 4, pp. 541–545, 1999.
[32]  F. B. Ortega, B. Tresaco, J. R. Ruiz et al., “Cardiorespiratory fitness and sedentary activities are associated with adiposity in adolescents,” Obesity, vol. 15, no. 6, pp. 1589–1599, 2007.
[33]  F. B. Ortega, J. R. Ruiz, M. J. Castillo, and M. Sj?str?m, “Physical fitness in childhood and adolescence: a powerful marker of health,” International Journal of Obesity, vol. 32, no. 1, pp. 1–11, 2008.
[34]  J. C. Hannon, T. Ratliffe, and D. P. Williams, “Agreement in body fat estimates between a hand-held bioelectrical impedance analyzer and skinfold thicknesses in African American and Caucasian adolescents,” Research Quarterly for Exercise and Sport, vol. 77, no. 4, pp. 519–526, 2006.
[35]  National Association for Sport and Physical Education and The American Heart Association, 2010 Shape of the Nation Report: Status of Physical Education in the USA, National Association for Sport and Physical Education, Reston, Va, USA, 2010.
[36]  K. R. Laurson, J. C. Eisenmann, and G. J. Welk, “Body Mass Index standards based on agreement with health-related body fat,” American Journal of Preventative Medicine, vol. 41, supplement 2, pp. S100–S105, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133