The Multicomponent Anthropometric Model for Assessing Body Composition in a Male Pediatric Population: A Simultaneous Prediction of Fat Mass, Bone Mineral Content, and Lean Soft Tissue
The aim of this study was to propose and cross-validate an anthropometric model for the simultaneous estimation of fat mass (FM), bone mineral content (BMC), and lean soft tissue (LST) using DXA as the reference method. A total of 408 boys (8–18 years) were included in this sample. Whole-body FM, BMC, and LST were measured by DXA and considered as dependent variables. Independent variables included thirty-two anthropometrics measurements and maturity offset determined by the Mirwald equation. From a multivariate regression model , a matrix analysis was performed resulting in a multicomponent anthropometric model. The cross-validation was executed through the sum of squares of residuals (PRESS) method. Five anthropometric variables predicted simultaneously FM, BMC, and LST. Cross-validation parameters indicated that the new model is accurate with high values ranging from 0.94 to 0.98 and standard error of estimate ranging from 0.01 to 0.09. The newly proposed model represents an alternative to accurately assess the body composition in male pediatric ages. 1. Introduction Estimate body composition of children is not an easy task, since the relationships between body components during growth are not constant as in adults. Anthropometric-based equations remain an adequate alternative for determining the body composition of pediatric populations in field settings. However, the advent of new technologies has enabled new ways for body composition assessment, thus, rendering the traditional anthropometry inaccuracy as a representative standard [1]. There are some methodological concerns when using the current anthropometric models: several equations have been developed using a two-compartment model (2C model) either using hydrostatic weighing [2, 3] or other densitometric techniques; however, this approach relies on assumptions, specifically concerning the fat-free mass (FFM) density (1.1?g/cc) and hydration (73.2% of total-body water within the FFM) that, although stable for adults, may vary substantially during growth. In fact, from childhood through adolescence, total-body water (TBW) decreases whereas bone mass increases which means that FFM density is lower than 1.1?g/cc, at younger ages, approaching that value when chemical maturity is reached [4]. Therefore, 2C models tend to overestimate FM and underestimate FFM in children, and their use as a criterion method for developing anthropometric-based models is inaccurate. For that reason, the use of 3C and 4C compartment models are preferred for determining the body composition in children [4], since fewer
References
[1]
S. B. Heymsfield, T. G. Lohman, Z. Wang, and S. B. Going, Human Body Composition, Human Kinetics, Champaign, Ill, USA, 2nd edition, 2005.
[2]
P. Deurenberg, J. J. L. Pieters, and J. G. A. J. Hautvast, “The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence,” British Journal of Nutrition, vol. 63, no. 2, pp. 293–303, 1990.
[3]
J. A. Weststrate and P. Deurenberg, “Body composition in children: proposal for a method for calculating body fat percentage from total body density or skinfold-thickness measurements,” American Journal of Clinical Nutrition, vol. 50, no. 5, pp. 1104–1115, 1989.
[4]
J. C. K. Wells, N. J. Fuller, O. Dewit, M. S. Fewtrell, M. Elia, and T. J. Cole, “Four-component model of body composition in children: density and hydration of fat-free mass and comparison with simpler models,” American Journal of Clinical Nutrition, vol. 69, no. 5, pp. 904–912, 1999.
[5]
A. Pietrobelli, C. Formica, Z. Wang, and S. B. Heymsfield, “Dual-energy X-ray absorptiometry body composition model: review of physical concepts,” American Journal of Physiology, vol. 271, no. 6, pp. E941–E951, 1996.
[6]
K. Hind, L. Gannon, E. Whatley, and C. Cooke, “Sexual dimorphism of femoral neck cross-sectional bone geometry in athletes and non-athletes: a hip structural analysis study,” Journal of Bone and Mineral Metabolism, vol. 30, no. 4, pp. 454–460, 2011.
[7]
M. P. Rothney, F.-P. Martin, Y. Xia et al., “Precision of GE lunar iDXA for the measurement of total and regional body composition in nonobese adults,” Journal of Clinical Densitometry, vol. 15, no. 4, pp. 399–404, 2012.
[8]
A. B. Sopher, J. C. Thornton, J. Wang, R. N. Pierson, S. B. Heymsfield, and M. Horlick, “Measurement of percentage of body fat in 411 children and adolescents: a comparison of dual-energy X-ray absorptiometry with a four-compartment model,” Pediatrics, vol. 113, no. 5 I, pp. 1285–1290, 2004.
[9]
M. Deurenberg-Yap, G. Schmidt, W. A. Van Staveren, J. G. A. J. Hautvast, and P. Deurenberg, “Body fat measurement among Singaporean Chinese, Malays and Indians: a comparative study using a four-compartment model and different two-compartment models,” British Journal of Nutrition, vol. 85, no. 4, pp. 491–498, 2001.
[10]
A. M. Silva, C. S. Minderico, P. J. Teixeira, A. Pietrobelli, and L. B. Sardinha, “Body fat measurement in adolescent athletes: multicompartment molecular model comparison,” European Journal of Clinical Nutrition, vol. 60, no. 8, pp. 955–964, 2006.
[11]
J. Wang, J. C. Thornton, M. Horlick et al., “Dual X-ray absorptiometry in pediatric studies: changing scan modes alters bone and body composition measurements,” Journal of Clinical Densitometry, vol. 2, no. 2, pp. 135–141, 1999.
[12]
CDC, National Health and Nutrition Examination Survey 1999-2000, National Center for Health Statistics, Toledo, Ohio, USA, 1999.
[13]
H. Bolfarine and W. O. Bussab, Elementos de Amostragem, Edgard Blücher, S?o Paulo, Brazil, 2005.
[14]
T. G. Lohman, A. F. Roche, and R. Martorell, Anthropometric Standardization Reference Manual, Human Kinetics, Champaign, Ill, USA, 1988.
[15]
K. Norton and T. Olds, Antropométrica, Armed, Porto Alegre, Brazil, 2005.
[16]
T. G. Lohman, “Applicability of body composition techniques and constants for children and youths,” Exercise and Sport Sciences Reviews, vol. 14, pp. 325–357, 1986.
[17]
R. L. Mirwald, A. D. G. Baxter-Jones, D. A. Bailey, and G. P. Beunen, “An assessment of maturity from anthropometric measurements,” Medicine and Science in Sports and Exercise, vol. 34, no. 4, pp. 689–694, 2002.
[18]
R R Development Core Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, 2012.
[19]
R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, New York, NY, USA, 5th edition, 1992.
[20]
D. B. Holiday, J. E. Ballard, and B. C. McKeown, “PRESS-related statistics: regression tools for cross-validation and case diagnostics,” Medicine and Science in Sports and Exercise, vol. 27, no. 4, pp. 612–620, 1995.
[21]
S. S. Sun, W. C. Chumlea, S. B. Heymsfield et al., “Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys,” American Journal of Clinical Nutrition, vol. 77, no. 2, pp. 331–340, 2003.
[22]
F. E. Nogueira, Modelos de Regress?o Multivariada, Instituto de Matemática e Estatística Universidade de S?o Paulo, S?o Paulo, Brazil, 2007.
[23]
D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Analysis, John Wiley, New York, NY, USA, 4th edition, 2006.
[24]
J. V. G. A. Durnin and J. Womersley, “Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years,” British Journal of Nutrition, vol. 32, no. 1, pp. 79–97, 1974.
[25]
K. J. Ellis, “Body composition of a young, multiethnic, male population,” American Journal of Clinical Nutrition, vol. 66, no. 6, pp. 1323–1331, 1997.
[26]
M. H. Slaughter, T. G. Lohman, R. A. Boileau et al., “Skinfold equations for estimations of body fatness in children and youth,” Human Biology, vol. 60, no. 5, pp. 709–723, 1988.
[27]
D. W. Harsha, R. R. Frerichs, and G. S. Berenson, “Densitometry and anthropometry of black and white children,” Human Biology, vol. 50, no. 3, pp. 261–280, 1978.
[28]
R. Roubenoff, J. J. Kehayias, B. Dawson-Hughes, and S. B. Heymsfield, “Use of dual-energy x-ray absorptiometry in body-composition studies: not yet a ‘gold standard’,” American Journal of Clinical Nutrition, vol. 58, no. 5, pp. 589–591, 1993.
[29]
J. Kim, Z. Wang, S. B. Heymsfield, R. N. Baumgartner, and D. Gallagher, “Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method,” American Journal of Clinical Nutrition, vol. 76, no. 2, pp. 378–383, 2002.
[30]
T. J. Cole, M. C. Bellizzi, K. M. Flegal, and W. H. Dietz, “Establishing a standard definition for child overweight and obesity worldwide: international survey,” British Medical Journal, vol. 320, no. 7244, pp. 1240–1243, 2000.
[31]
J. C. K. Wells, J. E. Williams, S. Chomtho et al., “Pediatric reference data for lean tissue properties: density and hydration from age 5 to 20?y,” American Journal of Clinical Nutrition, vol. 91, no. 3, pp. 610–618, 2010.
[32]
E. M. Gon?alves, A. M. Silva, D. A. Santos et al., “Accuracy of anthropometric measurements in estimating fat mass in individuals with 21-hydroxylase deficiency,” Nutrition, vol. 28, no. 10, pp. 984–990, 2012.
[33]
M. I. Goran, P. Driscoll, R. Johnson, T. R. Nagy, and G. Hunter, “Cross-calibration of body-composition techniques against dual-energy X-ray absorptiometry in young children,” American Journal of Clinical Nutrition, vol. 63, no. 3, pp. 299–305, 1996.
[34]
D. J. Hoffman, T. Toro-Ramos, A. L. Sawaya, S. B. Roberts, and P. Rondo, “Estimating total body fat using a skinfold prediction equation in Brazilian children,” Annals of Human Biology, vol. 39, no. 2, pp. 156–160, 2012.
[35]
T. T. K. Huang, M. S. Johnson, B. A. Gower, and M. I. Goran, “Effect of changes in fat distribution on the rates of change of insulin response in children,” Obesity Research, vol. 10, no. 10, pp. 978–984, 2002.
[36]
G. A. Bray, J. P. De Lany, J. Volaufova, D. W. Harsha, and C. Champagne, “Prediction of body fat in 12-y-old African American and white children: evaluation of methods,” American Journal of Clinical Nutrition, vol. 76, no. 5, pp. 980–990, 2002.
[37]
J. A. Morrison, S. S. Guo, B. Specker, W. C. Chumlea, S. Z. Yanovski, and J. A. Yanovski, “Assessing the body composition of 6–17-year-old black and white girls in field studies,” American Journal of Human Biology, vol. 13, no. 2, pp. 249–254, 2001.
[38]
C. V. Dezenberg, T. R. Nagy, B. A. Gower, R. Johnson, and M. I. Goran, “Predicting body composition from anthropometry in pre-adolescent children,” International Journal of Obesity, vol. 23, no. 3, pp. 253–259, 1999.
[39]
R. J. Toombs, G. Ducher, J. A. Shepherd, and M. J. De Souza, “The impact of recent technological advances on the trueness and precision of DXA to assess body composition,” Obesity, vol. 20, no. 1, pp. 30–39, 2011.