全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Lifestyle and Dietary Factors Associated with the Evolution of Cardiometabolic Risk over Four Years in West-African Adults: The Benin Study

DOI: 10.1155/2013/298024

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aim. To assess in adults from Benin changes in cardiometabolic risk (CMR) using both the Framingham risk score (FRS) and metabolic syndrome (MetS) and to examine the effects of diet, and lifestyles, controlling for location and socioeconomic status. Methods. Apparently healthy subjects ( ) aged 25–60 years and randomly selected in the largest city, a small town, and rural areas were included in the four-year longitudinal study. Along with CMR factors, socioeconomic, diet and lifestyle data were collected in individual interviews. A food score based on consumption frequency of four “sentinel” food groups (meat and poultry, dairy, eggs, and vegetables) was developed. Lifestyle included physical activity, alcohol and tobacco use. Education and income (proxy) were the socioeconomic variables. Results. Among the subjects with four-year follow-up data ( ), 13.5% were at risk at baseline, showing MetS or FRS ≥ 10%. The incidence of MetS and FRS ≥ 10% during follow-up was 8.2% and 5%, respectively. CMR deteriorated in 21% of subjects. Diet and lifestyle mediated location and income effects on CMR evolution. Low food scores and inactivity increased the likelihood of CMR deterioration. Conclusion. Combining MetS and FRS might be appropriate for surveillance purposes in order to better capture CMR and inform preventive measures. 1. Introduction The burden of noncommunicable diseases such as diabetes and cardiovascular disease (CVD) is rapidly rising in low-income countries [1]. The increasing prevalence of noncommunicable diseases may be partly explained by the on-going nutrition transition process with major changes in diet and lifestyle patterns. These changes are characterized by shifts from traditional diets typically high in fiber and low in fat to westernized diets high in saturated fat, sugar, salt, and processed foods, combined with a more sedentary lifestyle, stress exposure, and less physical activity all of which increase cardiometabolic risk (CMR) factors [2]. Previous studies in sub-Saharan African countries [3] confirmed the relationship between nutrition transition and the increase of CMR factors. In a previous paper, we reported increasing CMR factors over four years in Benin adults who were apparently healthy at onset of study. The four-year incidence rates of abdominal obesity, insulin resistance (based on HOMA), and low HDL cholesterol were, respectively, 10.8%, 30.7%, and 30.2%, and that of the metabolic syndrome (Mets) 9% [4]. However, it was felt that the MetS does not give a proper measure of CMR profile in this population for reasons

References

[1]  World Health Organization, Global Status Report on Noncommunicable Diseases 2010, World Health Organization, Geneva, Switzerland, 2011.
[2]  B. M. Popkin, “Global nutrition dynamics: the world is shifting rapidly toward a diet linked with noncommunicable diseases,” American Journal of Clinical Nutrition, vol. 84, no. 2, pp. 289–298, 2006.
[3]  Z. Abrahams, Z. McHiza, and N. P. Steyn, “Diet and mortality rates in Sub-Saharan Africa: stages in the nutrition transition,” BMC Public Health, vol. 11, article 801, 2011.
[4]  C. Sossa, H. Delisle, V. Agueh, and B. Fayomi, “Four-year trends in cardiometabolic risk factors according to baseline abdominal obesity status in west-African Adults: the benin study,” Journal of Obesity, vol. 2012, Article ID 740854, 10 pages, 2012.
[5]  H. Delisle, M. C. Désilets, E. R. Vargas, and D. Garrel, “Metabolic syndrome in three ethnic groups using current definitions,” Applied Physiology, Nutrition and Metabolism, vol. 33, no. 2, pp. 356–360, 2008.
[6]  A. E. Schutte, R. Schutte, H. W. Huisman et al., “Classifying Africans with the metabolic syndrome,” Hormone and Metabolic Research, vol. 41, no. 2, pp. 79–85, 2009.
[7]  B. J. Arsenault, P. Pibarot, and J. P. Després, “The quest for the optimal assessment of global cardiovascular risk: are traditional risk factors and metabolic syndrome partners in crime?” Cardiology, vol. 113, no. 1, pp. 35–49, 2009.
[8]  A. O. Ogbera, “Prevalence and gender distribution of the metabolic syndrome,” Diabetology and Metabolic Syndrome, vol. 2, no. 1, article 1, 2010.
[9]  World Health Organization, “2008–2013 action plan for the global strategy for prevention and control of non communicable diseases,” 2008.
[10]  S. G. Wannamethee, A. G. Shaper, L. Lennon, and R. W. Morris, “Metabolic syndrome vs Framingham risk score for prediction of coronary heart disease, stroke, and type 2 diabetes mellitus,” Archives of Internal Medicine, vol. 165, no. 22, pp. 2644–2650, 2005.
[11]  T. Kawada, T. Otsuka, H. Inagaki, Y. Wakayama, Q. Li, and M. Katsumata, “Relationship between two indicators of coronary risk estimated by the framingham risk score and the number of metabolic syndrome components in Japanese male manufacturing workers,” Metabolic Syndrome and Related Disorders, vol. 7, no. 5, pp. 435–440, 2009.
[12]  A. E. Sumner, J. Zhou, A. Doumatey et al., “Low HDL-cholesterol with normal triglyceride levels is the most common lipid pattern in West Africans and African Americans with Metabolic Syndrome: implications for cardiovascular disease prevention,” Cardiovascular Disease Prevention and Control, vol. 5, no. 3, pp. 75–80, 2010.
[13]  M. Bansal, S. Shrivastava, R. Mehrotra, V. Agarwal, and R. R. Kasliwal, “Low Framingham risk score despite high prevalence of metabolic syndrome in asymptomatic North-Indian population,” Journal of Association of Physicians of India, vol. 57, no. 1, pp. 17–22, 2009.
[14]  G. Ntandou, H. Delisle, V. Agueh, and B. Fayomi, “Physical activity and socioeconomic status explain rural-urban differences in obesity: a cross-sectional study in benin (West Africa),” Ecology of Food and Nutrition, vol. 47, no. 4, pp. 313–337, 2008.
[15]  World Health Organisation, Consultation on Obesity Classification according to Body Mass Index, Geneva, Switzerland, 1993.
[16]  K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al., “Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity,” Circulation, vol. 120, no. 16, pp. 1640–1645, 2009.
[17]  K. G. M. M. Alberti, P. Zimmet, and J. Shaw, “The metabolic syndrome—a new worldwide definition,” The Lancet, vol. 366, no. 9491, pp. 1059–1062, 2005.
[18]  International Diabetes Federation, The IDF Consensus Worldwide Definition of the Metabolic Syndrome, IDF, Brussels, Belgium, 2006.
[19]  J. Millán, X. Pintó, A. Mu?oz et al., “Lipoprotein ratios: physiological significance and clinical usefulness in cardiovascular prevention,” Vascular Health and Risk Management, vol. 5, pp. 757–765, 2009.
[20]  R. B. D'Agostino, R. S. Vasan, M. J. Pencina et al., “General cardiovascular risk profile for use in primary care: the Framingham heart study,” Circulation, vol. 117, no. 6, pp. 743–753, 2008.
[21]  R. B. D'Agostino, S. Grundy, L. M. Sullivan, and P. Wilson, “Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation,” Journal of the American Medical Association, vol. 286, no. 2, pp. 180–187, 2001.
[22]  WHO/FAO Expert Consultation, Vitamin and Mineral Requirements in Human Nutrition, Worl Health Organization, Geneva, Switzerland, 2nd edition, 2005.
[23]  H. Delisle, G. Ntandou-Bouzitou, V. Agueh, et al., “Urbanisation, nutrition transition and cardiometabolic risk: the Benin study,” British Journal of Nutrition, vol. 107, no. 10, pp. 1534–1544, 2011.
[24]  World Health Organization, “WHO steps instrument question-by-question,” 2009, http://www.who.int/chp/steps/STEPS_QbyQ_Guide.pdf.
[25]  WHO/FAO Expert Consultation, “Recommendations for preventing cardiovascular diseases. In: diet, nutrition and the prevention of chronic diseases,” Who Technical Report Series 916, World Health Organization, Geneva, Switzerland, 2003.
[26]  R. R. Pate, J. R. O'Neill, and F. Lobelo, “The evolving definition of ‘sedentary’,” Exercise and Sport Sciences Reviews, vol. 36, no. 4, pp. 173–178, 2008.
[27]  W. Sinkiewicz and M. Weglarz, “Alcohol and wine and cardiovascular diseases in epidemiologic studies,” Przeglad Lekarski, vol. 66, no. 5, pp. 233–238, 2009.
[28]  R. Sodjinou, V. Agueh, B. Fayomi, and H. Delisle, “Obesity and cardio-metabolic risk factors in urban adults of Benin: relationship with socio-economic status, urbanisation, and lifestyle patterns,” BMC Public Health, vol. 8, article 84, 2008.
[29]  C. Y. Campbell, K. Nasir, J. A. Carvalho, R. S. Blumenthal, and R. D. Santos, “The metabolic syndrome adds incremental value to the Framingham risk score in identifying asymptomatic individuals with higher degrees of inflammation,” Journal of the cardiometabolic syndrome, vol. 3, no. 1, pp. 7–11, 2008.
[30]  R. D. Santos, K. Nasir, K. Tufail, R. S. Meneghelo, J. A. Carvalho, and R. S. Blumenthal, “Metabolic syndrome is associated with coronary artery calcium in asymptomatic white Brazilian men considered low-risk by Framingham risk score,” Preventive Cardiology, vol. 10, no. 3, pp. 141–146, 2007.
[31]  A. Jaquet, J. Deloumeaux, M. Dumoulin, J. Bangou, J. P. Donnet, and L. Foucan, “Metabolic syndrome and Framingham risk score for prediction of cardiovascular events in Caribbean Indian patients with blood glucose abnormalities,” Diabetes and Metabolism, vol. 34, no. 2, pp. 177–181, 2008.
[32]  E. S. Ford, W. H. Giles, and W. H. Dietz, “Prevalence of the metabolic syndrome among us adults: findings from the third national health and nutrition examination survey,” Journal of the American Medical Association, vol. 287, no. 3, pp. 356–359, 2002.
[33]  R. B. Ervin, “Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006,” National Health Statistics Reports, vol. 5, no. 13, pp. 1–7, 2009.
[34]  S. M. Grundy, “Metabolic syndrome pandemic,” Arteriosclerosis, Thrombosis, and Vascular Biology, vol. 28, no. 4, pp. 629–636, 2008.
[35]  A. A. Motala, T. Esterhuizen, F. J. Pirie, and M. A. K. Omar, “The prevalence of metabolic syndrome and determination of the optimal waist circumference cutoff points in a rural South African community,” Diabetes Care, vol. 34, no. 4, pp. 1032–1037, 2011.
[36]  Répubique du Bénin, “Analyse globale de la vulnérabilité, de la sécurité alimentaire et de la nutrition,” 2009.
[37]  G. Kennedy, N. Fanou-Fogny, C. Seghieri et al., “Food groups associated with a composite measure of probability of adequate intake of 11 micronutrients in the diets of women in urban Mali,” Journal of Nutrition, vol. 140, no. 11, pp. 2070S–2078S, 2010.
[38]  Working Group on Infant and Young Child Feeding Indicators, Developing and Validating Simple Indicators of Dietary Quality of Infants and Young Children in Developing Countries: Additional Analysis of 10 Data Sets, FANTA and AED, Washington, DC, USA, 2007.
[39]  F. K. Assah, U. Ekelund, S. Brage, J. C. Mbanya, and N. J. Wareham, “Urbanization, physical activity, and metabolic health in sub-Saharan Africa,” Diabetes Care, vol. 34, no. 2, pp. 491–496, 2011.
[40]  L. A. Leiter, D. H. Fitchett, R. E. Gilbert et al., “Cardiometabolic risk in Canada: a detailed analysis and position paper by the cardiometabolic risk working group,” The Canadian Journal of Cardiology, vol. 27, no. 2, pp. e1–e33, 2011.
[41]  P. A. Gardiner, B. K. Clark, and G. N. Healy, “Measuring older adults' sedentary time: reliability, validity, and responsiveness,” Medicine and Science in Sports and Exercise, vol. 43, no. 11, pp. 2127–2133, 2011.
[42]  A. Bankoski, T. B. Harris, J. J. McClain et al., “Sedentary activity associated with metabolic syndrome independent of physical activity,” Diabetes Care, vol. 34, no. 2, pp. 497–503, 2011.
[43]  A. Gr?ntved and F. B. Hu, “Television viewing and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a meta-analysis,” Journal of the American Medical Association, vol. 305, no. 23, pp. 2448–2455, 2011.
[44]  U. Ekelund, S. J. Griffin, and N. J. Wareham, “Physical activity and metabolic risk in individuals with a family history of type 2 diabetes,” Diabetes Care, vol. 30, no. 2, pp. 337–342, 2007.
[45]  U. Ekelund, S. Brage, S. J. Griffin, and N. J. Wareham, “Objectively measured moderate- and vigorous-intensity physical activity but not sedentary time predicts insulin resistance in high-risk individuals,” Diabetes Care, vol. 32, no. 6, pp. 1081–1086, 2009.
[46]  H. A. Raynor, P. S. Freedson, and S. B. Sisson, “Sedentary behaviors, weight, and health and disease risks,” Journal of Obesity, vol. 2012, Article ID 852743, 3 pages, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133