全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Body Fat and Body-Mass Index among a Multiethnic Sample of College-Age Men and Women

DOI: 10.1155/2013/790654

Full-Text   Cite this paper   Add to My Lib

Abstract:

Obesity prevalence and average body composition vary by US race and gender. Asian Americans have the lowest prevalence of obesity. Relying on body-mass index (BMI) to estimate obesity prevalence may misclassify subgroups that appear normally weighted but have excess body fat. We evaluated percentage body fat (PBF) and BMI to determine whether BMI reflects PBF consistently across different races. 940 college students were recruited from a local public university over four consecutive years. We measured PBF by bioelectrical impedance analysis (BIA), weight by physicians’ scales, and height with stadiometers. Our sample comprised Asians (49%), Caucasians (23%), Hispanics (7%), and Other (21%). Participants averaged 21.4 years old; BMI was 22.9?kg/m2; PBF was 24.8%. BMI and PBF varied significantly by race and gender (P value?=?0.002 and 0.005 for men; 0.0009 and 0.0008 for women). Asian-American women had the lowest BMI (21.5?kg/m2) but the second highest PBF (27.8%). Linear association between BMI and PBF was the weakest ( ) among Asian-American women and BMI had the poorest sensitivity (37%) to detect PBF. The high PBF with low BMI pattern exhibited by Asian-American women suggests that they could escape detection for obesity-related disease if BMI is the sole measure that estimates body composition. 1. Introduction Body-mass index (BMI), an important indicator of obesity prevalence in large populations, generally reflects degree of fatness among individuals. Body-mass index can however over- or underestimate adiposity depending upon certain circumstances. Accurate determination of obesity has become exceedingly important because of major health threats posed by excess adiposity. Obesity is associated with increased incidence of cardiovascular disease, diabetes, sleep apnea, degenerative joint disease, and site-specific cancers [1–6]. Moreover, high obesity prevalence could potentially result in shortened life expectancy in the coming years [7] and excess mortality [8, 9]. Because of the present and future health problems associated with excess adipose tissue, underestimation of obesity, particularly in young adults who might otherwise appear to have normal BMI measures, could lead to false conclusions about body composition and future health status. Underestimation of body fatness in young women for instance may be problematic for future risk of diseases such as breast cancer. Patterns of excess adipose tissue established early in adulthood could promote the occurrence of obesity at menopause, a known risk factor for breast cancer [10–12]. Validation

References

[1]  K. M. Flegal, M. D. Carroll, B. K. Kit, and C. L. Ogden, “Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999–2010,” Journal of the American Medical Association, vol. 307, pp. 491–497, 2012.
[2]  H. B. Hubert, M. Feinleib, P. M. McNamara, and W. P. Castelli, “Obesity as an independent risk factor for cardiovascular disease: a 26-year follow-up of participants in the Framingham Heart Study,” Circulation, vol. 67, no. 5, pp. 968–977, 1983.
[3]  F. B. Hu, J. E. Manson, M. J. Stampfer et al., “Diet, lifestyle, and the risk of type 2 diabetes mellitus in women,” The New England Journal of Medicine, vol. 345, no. 11, pp. 790–797, 2001.
[4]  P. E. Peppard, T. Young, M. Palta, J. Dempsey, and J. Skatrud, “Longitudinal study of moderate weight change and sleep-disordered breathing,” Journal of the American Medical Association, vol. 284, no. 23, pp. 3015–3021, 2000.
[5]  C. L. Carpenter and L. Bernstein, “Obesity and cancer risk,” in Nutritional Oncology, D. Heber, G. Blackburn, V. L. Go, and J. Milner, Eds., Academic Press, Burlington, Mass, USA, 2nd edition, 2006.
[6]  P. Manninen, H. Riihimaki, M. Heliovaara, and P. Makela, “Overweight, gender and knee osteroarthritis,” International Journal of Obesity and Related Metabolic Disorders, vol. 20, pp. 595–597, 1996.
[7]  S. J. Olshansky, D. J. Passaro, R. C. Hershow et al., “A potential decline in life expectancy in the United States in the 21st century,” The New England Journal of Medicine, vol. 352, no. 11, pp. 1138–1145, 2005.
[8]  E. E. Calle, C. Rodriguez, K. Walker-Thurmond, and M. J. Thun, “Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults,” The New England Journal of Medicine, vol. 348, no. 17, pp. 1625–1638, 2003.
[9]  K. F. Adams, A. Schatzkin, T. B. Harris et al., “Overweight, obesity, and mortality in a large prospective cohort of persons 50 to 71 years old,” The New England Journal of Medicine, vol. 355, no. 8, pp. 763–778, 2006.
[10]  T. Key, P. Appleby, I. Barnes, and G. Reeves, “Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies,” Journal of the National Cancer Institute, vol. 94, no. 8, pp. 606–616, 2002.
[11]  C. L. Carpenter, R. K. Ross, A. Paganini-Hill, and L. Bernstein, “Effect of family history, obesity and exercise on breast cancer risk among postmenopausal women,” International Journal of Cancer, vol. 106, no. 1, pp. 96–102, 2003.
[12]  M. L. Slattery, C. Sweeney, S. Edwards et al., “Body size, weight change, fat distribution and breast cancer risk in Hispanic and non-Hispanic white women,” Breast Cancer Research and Treatment, vol. 102, no. 1, pp. 85–101, 2007.
[13]  D. Heber, S. Ingles, J. M. Ashley, M. H. Maxwell, R. F. Lyons, and R. M. Elashoff, “Clinical detection of sarcopenic obesity by bioelectrical impedance analysis,” American Journal of Clinical Nutrition, vol. 64, supplement 3, pp. 472s–477s, 1996.
[14]  F. Curtin, A. Morabia, C. Pichard, and D. O. Slosman, “Body mass index compared to dual-energy x-ray absorptiometry: evidence for a spectrum bias,” Journal of Clinical Epidemiology, vol. 50, no. 7, pp. 837–843, 1997.
[15]  J. M. Jakicic, R. R. Wing, and W. Lang, “Bioelectrical impedance analysis to assess body composition in obese adult women: the effect of ethnicity,” International Journal of Obesity, vol. 22, no. 3, pp. 243–249, 1998.
[16]  P. Deurenberg, A. Andreoli, P. Borg et al., “The validity of predicted body fat percentage from body mass index and from impedance in samples of five European populations,” European Journal of Clinical Nutrition, vol. 55, no. 11, pp. 973–979, 2001.
[17]  D. C. Frankenfield, W. A. Rowe, R. N. Cooney, J. S. Smith, and D. Becker, “Limits of body mass index to detect obesity and predict body composition,” Nutrition, vol. 17, no. 1, pp. 26–30, 2001.
[18]  C. J. Chang, C. H. Wu, C. S. Chang et al., “Low body mass index but high percent body fat in Taiwanese subjects: implications of obesity cutoffs,” International Journal of Obesity, vol. 27, no. 2, pp. 253–259, 2003.
[19]  M. Kagawa, D. Kerr, H. Uchida, and C. W. Binns, “Differences in the relationship between BMI and percentage body fat between Japanese and Australian-Caucasian young men,” British Journal of Nutrition, vol. 95, no. 5, pp. 1002–1007, 2006.
[20]  E. M. Evans, D. A. Rowe, S. B. Racette, K. M. Ross, and E. McAuley, “Is the current BMI obesity classification appropriate for black and white postmenopausal women?” International Journal of Obesity, vol. 30, no. 5, pp. 837–843, 2006.
[21]  A. Romero-Corral, V. K. Somers, J. Sierra-Johnson et al., “Accuracy of body mass index in diagnosing obesity in the adult general population,” International Journal of Obesity, vol. 32, no. 6, pp. 959–966, 2008.
[22]  P. Barnes, Physical Activity among Adults: United States, 2000 and 2005, National Center for Health Statistics, Hyattsville, Md, USA; Center for Disease Control, Atlanta, Ga, USA, 2007.
[23]  WHO Expert Committee on Physical Status, “Physical status: the use and interpretation of anthropometry,” WHO Technical Report Series, vol. 854, pp. 1–416, 1995.
[24]  WHO Expert Consultation, “Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies,” The Lancet, vol. 363, pp. 157–163, 2004.
[25]  K. M. Flegal, J. A. Shepherd, A. C. Looker et al., “Comparisons of percentage body fat, body mass index, waist circumference, and waist-stature ratio in adults,” American Journal of Clinical Nutrition, vol. 89, no. 2, pp. 500–508, 2009.
[26]  D. O. Okorodudu, M. F. Jumean, A. Romero-Corral, V. K. Somers, P. J. Erwin, and F. Lopez-Jimenez, “Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta-analysis,” International Journal of Obesity, vol. 34, no. 5, pp. 791–799, 2010.
[27]  D. G. Altman and J. M. Bland, “Diagnostic tests 1: sensitivity and specificity,” British Medical Journal, vol. 308, no. 6943, p. 1552, 1994.
[28]  M. A. McDowell, C. D. Fryar, C. L. Ogden, and K. M. Flegal, “Anthropometric reference data for children and adults: U.S. population, 2003–2006,” National Health Statistics Reports, vol. 101, pp. 1–45, U.S. Department of Health and Human Services, Centers for Disease Control and Prevention. National Center for Health Statistics, 2008.
[29]  D. Gallagher, M. Visser, D. Sepúlveda, R. N. Pierson, T. Harris, and S. B. Heymsfieid, “How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups?” American Journal of Epidemiology, vol. 143, no. 3, pp. 228–239, 1996.
[30]  H. C. Lukaski, “Body mass index, bioelectrical impedance, and body composition,” Nutrition, vol. 17, no. 1, pp. 55–56, 2001.
[31]  P. Deurenberg, M. Yap, and W. A. van Staveren, “Body mass index and percent body fat: a meta analysis among different ethnic groups,” International Journal of Obesity, vol. 22, no. 12, pp. 1164–1171, 1998.
[32]  S. Gurrici, Y. Hartriyanti, J. G. Hautvast, and P. Deurenberg, “Relationship between body fat and body mass index: differences between Indonesians and Dutch Caucasians,” European Journal of Clinical Nutrition, vol. 52, no. 11, pp. 779–783, 1998.
[33]  D. Gallagher, S. B. Heymsfield, M. Heo, S. A. Jebb, P. R. Murgatroyd, and Y. Sakamoto, “Healthy percentage body fat ranges: an approach for developing guidelines based on body mass index,” American Journal of Clinical Nutrition, vol. 72, no. 3, pp. 694–701, 2000.
[34]  K. P. Navder, Q. He, X. Zhang et al., “Relationship between body mass index and adiposity in prepubertal children: ethnic and geographic comparisons between New York City and Jinan City (China),” Journal of Applied Physiology, vol. 107, no. 2, pp. 488–493, 2009.
[35]  N. R. Shah and E. R. Braverman, “Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin,” Public Library of Science One, vol. 7, Article ID e33308, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133