全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effects of Nicotine on Emotional Reactivity in PTSD and Non-PTSD Smokers: Results of a Pilot fMRI Study

DOI: 10.1155/2012/265724

Full-Text   Cite this paper   Add to My Lib

Abstract:

There is evidence that individuals with posttraumatic stress disorder (PTSD) may smoke in part to regulate negative affect. This pilot fMRI study examined the effects of nicotine on emotional information processing in smokers with and without PTSD. Across groups, nicotine increased brain activation in response to fearful/angry faces (compared to neutral faces) in ventral caudate. Patch x Group interactions were observed in brain regions involved in emotional and facial feature processing. These preliminary findings suggest that nicotine differentially modulates negative information processing in PTSD and non-PTSD smokers. 1. Introduction Posttraumatic stress disorder (PTSD) is associated with elevated rates of cigarette smoking (40%–63%) compared with population norms (20%–30%) [1–3]. Moreover, smokers with PTSD are significantly more likely to be “heavy” smokers (i.e., smoke >25 cigarettes/day) [4] and take larger puffs [5]. In naturalistic studies, PTSD smokers are more likely to report negative affective (NA) states as an antecedent to smoking [6] and also report significant reductions in NA following smoking [7]. A hallmark phenotype of individuals with PTSD is increased psychophysiological responsivity and NA to idiopathic trauma-related stimuli [8]. Furthermore, individuals with PTSD exhibit aberrant responding to nonspecific, negative emotional stimuli [9]. For instance, individuals with PTSD exhibit biased attention to negative emotional information [10, 11]. Moreover, compared to non-PTSD trauma survivors, PTSD survivors have increased electrocortical responses to sad faces [12]. It has been proposed [13, 14] that dysregulated emotional information processing in PTSD is due to hyperresponsiveness of the amygdala—a region subserving negative emotional information processes [15]—and also hyporesponsiveness of medial prefrontal cortices—a region involved in cognitive control of emotional responses [16]. Support for this hypothesis comes from fMRI studies of PTSD patients showing increased reactivity to fearful faces in amygdala as compared to controls [17, 18] coincident with decreased reactivity in medial prefrontal regions [18]. Laboratory studies show that smoking and nicotine reduces distraction caused by negative stimuli [19] and electrocortical responses [20] to these stimuli among smokers. Moreover, neuroimaging studies show that nicotine acts on limbic (e.g., amygdala) and prefrontal brain areas that subserve emotional information processing [21–23]. Despite evidence regarding smoking/PTSD interactions, no neuroimaging studies to date have

References

[1]  J. C. Beckham, A. A. Roodman, R. H. Shipley et al., “Smoking in Vietnam combat veterans with post-traumatic stress disorder,” Journal of Traumatic Stress, vol. 8, no. 3, pp. 461–472, 1995.
[2]  N. Breslau, G. C. Davis, and L. R. Schultz, “Posttraumatic stress disorder and the incidence of nicotine, alcohol, and other drug disorders in persons who have experienced trauma,” Archives of General Psychiatry, vol. 60, no. 3, pp. 289–294, 2003.
[3]  K. Lasser, J. W. Boyd, S. Woolhandler, D. U. Himmelstein, D. McCormick, and D. H. Bor, “Smoking and mental illness: a population-based prevalence study,” Journal of the American Medical Association, vol. 284, no. 20, pp. 2606–2610, 2000.
[4]  J. C. Beckham, A. C. Kirby, M. E. Feldman et al., “Prevalence and correlates of heavy smoking in Vietnam veterans with chronic posttraumatic stress disorder,” Addictive Behaviors, vol. 22, no. 5, pp. 637–647, 1997.
[5]  F. J. McClernon, J. C. Beckham, S. L. Mozley, M. E. Feldman, S. R. Vrana, and J. E. Rose, “The effects of trauma recall on smoking topography in posttraumatic stress disorder and non-posttraumatic stress disorder trauma survivors,” Addictive Behaviors, vol. 30, no. 2, pp. 247–257, 2005.
[6]  J. C. Beckham, M. E. Feldman, S. R. Vrana et al., “Immediate antecedents of cigarette smoking in smokers with and without posttraumatic stress disorder: a preliminary study,” Experimental and Clinical Psychopharmacology, vol. 13, no. 3, pp. 219–228, 2005.
[7]  J. C. Beckham, M. T. Wiley, S. C. Miller et al., “Ad lib smoking in post-traumatic stress disorder: an electronic diary study,” Nicotine and Tobacco Research, vol. 10, no. 7, pp. 1149–1157, 2008.
[8]  S. P. Orr, L. J. Metzger, and R. K. Pitman, “Psychophysiology of post-traumatic stress disorder,” Psychiatric Clinics of North America, vol. 25, no. 2, pp. 271–293, 2002.
[9]  J. E. Rose, “Nicotine and nonnicotine factors in cigarette addiction,” Psychopharmacology, vol. 184, no. 3-4, pp. 274–285, 2006.
[10]  W. H. Alexander and J. W. Brown, “Competition between learned reward and error outcome predictions in anterior cingulate cortex,” NeuroImage, vol. 49, no. 4, pp. 3210–3218, 2010.
[11]  R. G. Schl?sser, G. Wagner, C. Schachtzabel et al., “Fronto-cingulate effective connectivity in obsessive compulsive disorder: a study with fMRI and dynamic causal modeling,” Human Brain Mapping, vol. 31, no. 12, pp. 1834–1850, 2010.
[12]  K. J. Friston, L. Harrison, and W. Penny, “Dynamic causal modelling,” NeuroImage, vol. 19, no. 4, pp. 1273–1302, 2003.
[13]  R. J. McNally, “Cognitive abnormalities in post-traumatic stress disorder,” Trends in Cognitive Sciences, vol. 10, no. 6, pp. 271–277, 2006.
[14]  S. L. Rauch, L. M. Shin, E. Segal et al., “Selectively reduced regional cortical volumes in post-traumatic stress disorder,” NeuroReport, vol. 14, no. 7, pp. 913–916, 2003.
[15]  J. E. LeDoux, “Emotion circuits in the brain,” Annual Review of Neuroscience, vol. 23, pp. 155–184, 2000.
[16]  R. J. Davidson, K. M. Putnam, and C. L. Larson, “Dysfunction in the neural circuitry of emotion regulation—a possible prelude to violence,” Science, vol. 289, no. 5479, pp. 591–594, 2000.
[17]  S. L. Rauch, P. J. Whalen, L. M. Shin et al., “Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study,” Biological Psychiatry, vol. 47, no. 9, pp. 769–776, 2000.
[18]  L. M. Shin, C. I. Wright, P. A. Cannistraro et al., “A functional magnetic resonance imaging study of amygdala and medial prefrontal cortex responses to overtly presented fearful faces in posttraumatic stress disorder,” Archives of General Psychiatry, vol. 62, no. 3, pp. 273–281, 2005.
[19]  A. Rzetelny, D. Gilbert, J. Hammersley, R. Radtke, N. Rabinovich, and S. Small, “Nicotine decreases attentional bias to negative-affect-related Stroop words among smokers,” Nicotine and Tobacco Research, vol. 10, no. 6, pp. 1029–1036, 2008.
[20]  D. G. Gilbert, C. Sugai, Y. Zuo, N. E. Rabinovich, F. J. McClernon, and B. Froeliger, “Brain indices of nicotine's effects on attentional bias to smoking and emotional pictures and to task-relevant targets,” Nicotine and Tobacco Research, vol. 9, no. 3, pp. 351–363, 2007.
[21]  E. F. Domino, L. Ni, Y. Xu, R. A. Koeppe, S. Guthrie, and J. K. Zubieta, “Regional cerebral blood flow and plasma nicotine after smoking tobacco cigarettes,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 28, no. 2, pp. 319–327, 2004.
[22]  J. E. Rose, F. M. Behm, E. C. Westman et al., “PET studies of the influences of nicotine on neural systems in cigarette smokers,” American Journal of Psychiatry, vol. 160, no. 2, pp. 323–333, 2003.
[23]  E. A. Stein, J. Pankiewicz, H. H. Harsch et al., “Nicotine-induced limbic cortical activation in the human brain: a functional MRI study,” American Journal of Psychiatry, vol. 155, no. 8, pp. 1009–1015, 1998.
[24]  C. Mueller-Pfeiffer, C. Martin-Soelch, J. R. Blair et al., “Impact of emotion on cognition in trauma survivors: what is the role of posttraumatic stress disorder?” Journal of Affective Disorders, vol. 126, no. 1-2, pp. 287–292, 2010.
[25]  S. S. Watkins, G. F. Koob, and A. Markou, “Neural mechanisms underlying nicotine addiction: acute positive reinforcement and withdrawal,” Nicotine and Tobacco Research, vol. 2, no. 1, pp. 19–37, 2000.
[26]  J. Fan, P. R. Hof, K. G. Guise, J. A. Fossella, and M. I. Posner, “The functional integration of the anterior cingulate cortex during conflict processing,” Cerebral Cortex, vol. 18, no. 4, pp. 796–805, 2008.
[27]  A. Azizian, L. J. Nestor, D. Payer, J. R. Monterosso, A. L. Brody, and E. D. London, “Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a stroop task,” Neuropsychopharmacology, vol. 35, no. 3, pp. 775–782, 2010.
[28]  CDC, “Annual smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 1995–1999,” Morbidity and Mortality Weekly Report, vol. 51, pp. 300–313, 2002.
[29]  CDC, “Cigarette smoking among adults—United States, 2000,” Morbidity and Mortality Weekly Report, vol. 51, pp. 642–645, 2000.
[30]  R. Elliott, K. J. Friston, and R. J. Dolan, “Dissociable neural responses in human reward systems,” Journal of Neuroscience, vol. 20, no. 16, pp. 6159–6165, 2000.
[31]  H. Garavan, “Insula and drug cravings,” Brain structure & function, vol. 214, no. 5-6, pp. 593–601, 2010.
[32]  M. Guitart-Masip, N. Bunzeck, K. E. Stephan, R. J. Dolan, and E. Düzel, “Contextual novelty changes reward representations in the striatum,” Journal of Neuroscience, vol. 30, no. 5, pp. 1721–1726, 2010.
[33]  E. K. Miller and J. D. Cohen, “An integrative theory of prefrontal cortex function,” Annual Review of Neuroscience, vol. 24, pp. 167–202, 2001.
[34]  H. S. Mayberg, “Limbic-cortical dysregulation: a proposed model of depression,” Journal of Neuropsychiatry and Clinical Neurosciences, vol. 9, no. 3, pp. 471–481, 1997.
[35]  G. A. Croghan, J. A. Sloan, I. T. Croghan et al., “Comparison of nicotine patch alone versus nicotine nasal spray alone versus a combination for treating smokers: a minimal intervention, randomized multicenter trial in a nonspecialized setting,” Nicotine and Tobacco Research, vol. 5, no. 2, pp. 181–187, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133