Objective. Obesity-dependent diseases cause economic burden to companies. Large-scale data for working populations are lacking. Prevalence of overweight and obesity in the Boehringer Ingelheim (BI) Employee cohort and the relationship between body mass index (BMI) and cardiometabolic risk factors and diseases were estimated. Design and Methods. Employees (≥38 years, employed in Ingelheim ≥2 years; ) of BI Pharma GmbH & Co. KG were invited by the medical corporate department to participate in intensive health checkups. Cross-sectional analysis of baseline data collected through 2006–2011 was performed. Results. 90% of eligible subjects participated ( ). Prevalences of overweight and obesity were 40% and 18% and significantly higher in men and participants ≥50 years. Cardiometabolic risk factor levels and prevalences of cardiometabolic diseases significantly increased with BMI and were higher in overweight and obese participants. Cut-points for increased risk estimated from ROC curves were ≈25?kg/m2 for hypertension, hypercholesterolemia, arteriosclerosis, and hypertriglyceridemia and 26.7–28.0?kg/m2 for the metabolic syndrome, insulin resistance, hyperinsulinemia, increased intima media thickness, and type 2 diabetes. Conclusion. This is the first large-scale occupational health care cohort from a single company. Cardiometabolic risk factors and diseases accumulate with increasing BMI. Occupational weight reduction programs seem to be reasonable strategies. 1. Introduction Over the last two decades, the prevalence of obesity has risen worldwide. Data from epidemiological studies indicate a high percentage of obese and overweight subjects in the German population compared to other countries in Western and Middle Europe, in particular, among men [1]. As obesity is an important risk factor for a number of cardiometabolic diseases, its increasing prevalence provokes substantial health and economic burden not only to society but also to companies by generating costs for nonproductive time and early retirement [2]. However, valid and representative data about prevalence of overweight, obesity, and the connected cardiovascular risk in the German operational medicine are lacking so far. The Boehringer Ingelheim (BI) Employee occupational health care cohort should bridge this gap. The BI medical corporate department offered the prevention and health care program “FIT IM LEBEN-FIT IM JOB” with intensive health checkups for free and advices for lifestyle changes. Aim of this analysis was to estimate (1) the prevalence of overweight and obesity in the baseline
References
[1]
K. Kuulasmaa, H. Tunstall-Pedoe, A. Dobson et al., “Estimation of contribution of changes in classic risk factors to trends in coronary-event rates across the WHO MONICA Project populations,” The Lancet, vol. 355, no. 9205, pp. 675–687, 2000.
[2]
A. Konnopka, M. B?demann, and H.-H. K?nig, “Health burden and costs of obesity and overweight in Germany,” European Journal of Health Economics, vol. 12, no. 4, pp. 345–352, 2011.
[3]
N. J. Perkins and E. F. Schisterman, “The inconsistency of “optimal” cutpoints obtained using two criteria based on the receiver operating characteristic curve,” American Journal of Epidemiology, vol. 163, no. 7, pp. 670–675, 2006.
[4]
G. D. Batty, M. J. Shipley, R. J. Jarrett, E. Breeze, M. G. Marmot, and G. Davey Smith, “Obesity and overweight in relation to disease-specific mortality in men with and without existing coronary heart disease in London: the original Whitehall study,” Heart, vol. 92, no. 7, pp. 886–892, 2006.
[5]
G. A. Colditz and S. E. Hankinson, “The nurses' health study: lifestyle and health among women,” Nature Reviews Cancer, vol. 5, no. 5, pp. 388–396, 2005.
[6]
M. E. Widlansky, H. D. Sesso, K. M. Rexrode, J. E. Manson, and J. M. Gaziano, “Body mass index and total and cardiovascular mortality in men with a history of cardiovascular disease,” Archives of Internal Medicine, vol. 164, no. 21, pp. 2326–2332, 2004.
[7]
J. Tuomilehto, K. Kuulasmaa, and J. Torppa, “WHO MONICA Project: geographic variation in mortality from cardiovascular diseases. Baseline data on selected population characteristics and cardiovascular mortality,” World health Statistics Quarterly, vol. 40, no. 2, pp. 171–184, 1987.
[8]
W. Rathmann, B. Haastert, A. Icks et al., “High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening. The KORA survey 2000,” Diabetologia, vol. 46, no. 2, pp. 182–189, 2003.
[9]
A. Schmermund, S. M?hlenkamp, A. Stang et al., “Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf RECALL study,” American Heart Journal, vol. 144, no. 2, pp. 212–218, 2002.
[10]
Max Rubner-Institut, “Nationale Verzehrsstudie II,” Bundesforschungsinstitut für Ern?hrung und Lebensmittel, 2008.
[11]
W. Koenig, M. Karakas, A. Zierer et al., “Oxidized LDL and the risk of coronary heart disease: results from the MONICA/KORA Augsburg study,” Clinical Chemistry, vol. 57, no. 8, pp. 1196–1200, 2011.
[12]
C. Herder, W. Peeters, T. Illig et al., “RANTES/CCL5 and risk for coronary events: results from the MONICA/KORA Augsburg case-cohort, Athero-express and CARDIoGRAM studies,” PLoS One, vol. 6, no. 12, Article ID e25734, 2011.
[13]
S. M?hlenkamp, N. Lehmann, S. Moebus et al., “Quantification of coronary atherosclerosis and inflammation to predict coronary events and all-cause mortality,” Journal of the American College of Cardiology, vol. 57, no. 13, pp. 1455–1464, 2011.
[14]
J. Tuomilehto, J. Lindstr?m, J. G. Eriksson et al., “Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance,” The New England Journal of Medicine, vol. 344, no. 18, pp. 1343–1350, 2001.
[15]
A. Ramachandran, C. Snehalatha, S. Mary, B. Mukesh, A. D. Bhaskar, and V. Vijay, “The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1),” Diabetologia, vol. 49, no. 2, pp. 289–297, 2006.
[16]
X.-R. Pan, G.-W. Li, Y.-H. Hu et al., “Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study,” Diabetes Care, vol. 20, no. 4, pp. 537–544, 1997.
[17]
W. C. Knowler, E. Barrett-Connor, S. E. Fowler et al., “Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin,” The New England Journal of Medicine, vol. 346, no. 6, pp. 393–403, 2002.