This study investigates the relationship between diet quality and weight gain in young women. Young women ( , with 1,356 women identified as plausible subsample aged 27.6?±?1.5 years at baseline) sampled from the Australian Longitudinal Study on Women’s Health study completed food frequency questionnaires in 2003, which were used to evaluate diet quality using three indices: Australian Recommended Food Score (ARFS), Australian Diet Quality Index (Aus-DQI), and Fruit and Vegetable Index (FAVI). Weight was self-reported in 2003 and 2009. Multivariate linear regression was used to examine the association between tertiles of each diet quality index and weight change from 2003 to 2009. The ARFS and FAVI were significant predictors of 6-year weight change in this group of young women, while Aus-DQI did not predict weight change ( ). In the fully adjusted model, those who were in the top tertile of the ARFS significantly gained lower weight gain compared with the lower tertile for the plausible TEI sub-sample ( ?kg (95% CI: ?2.67 to ?0.56), ). In the fully adjustment model, young women were classified in the highest FAVI tertile and gained significantly less weight than those in the lowest tertile for the plausible TEI ( ?kg (95% CI: ?2.4 to ?0.3) ). In conclusion, overall diet quality measured by the ARFS and the frequency and variety of fruit and vegetable consumption may predict long-term weight gain in young women. Therefore, health promotion programs encouraging frequent consumption of a wide variety of fruits and vegetables are warranted. 1. Introduction Recently, there has been a focus on evaluating the association between the nutritional quality of dietary intake and health outcomes [1]. Several studies have reported an inverse association between higher diet quality, all-cause, and chronic disease-specific mortality [1]. Our recent systematic review demonstrated a significant association between poor diet quality and greater weight gain [2]. A recent study demonstrated, in a nationally representative sample in the United States, that younger adults have poorer diet quality when compared with both children and older adults [3]. The evidence indicates that early adulthood is a high-risk period for weight gain, especially for females [4, 5]. For example, the Australian Longitudinal Study on Women’s Health (ALSWH) data shows that when young women reach their forties, they will be heavier than middle-aged women are now [5]. However, our systematic review found limited studies that have specifically examined the association between diet quality and weight
References
[1]
C. E. Collins, A. F. Young, and A. Hodge, “Diet quality is associated with higher nutrient intake and self-rated health in mid-aged women,” Journal of the American College of Nutrition, vol. 27, no. 1, pp. 146–157, 2008.
[2]
H. M. Aljadani, A. Patterson, D. Sibbritt, and C. E. Collins, “The association between diet quality and weight change in adults over time: a systematic review in perspective studies,” in Diet Quality- an Evidence Approach, R. Victor, Ed., vol. 2, pp. 3–27, Springer, New York, NY, USA, 2013.
[3]
H. A. B. Hiza, K. O. Casavale, P. M. Guenther, and C. A. Davis, “Diet quality of Americans differs by age, sex, race/ethnicity, income, and education level,” Journal of the Academy of Nutrition and Dietetics, vol. 113, pp. 297–306, 2013.
[4]
J. E. Norman, D. Bild, C. E. Lewis, K. Liu, and D. S. West, “The impact of weight change on cardiovascular disease risk factors in young black and white adults: The CARDIA Study,” International Journal of Obesity, vol. 27, no. 3, pp. 369–376, 2003.
[5]
L. Adamson, W. Brown, J. Byles et al., Women's Weight: Findings from the Australian Longitudinal Study on Women's Health: The University of Newcastle, The University of Queensland, 2007.
[6]
T. A. Ledoux, M. D. Hingle, and T. Baranowski, “Relationship of fruit and vegetable intake with adiposity: a systematic review,” Obesity Reviews, vol. 12, no. 501, pp. e143–e150, 2011.
[7]
P. A. Quatromoni, M. Pencina, M. R. Cobain, P. F. Jacques, and R. B. D'Agostino, “Dietary quality predicts adult weight gain: findings from the framingham offspring study,” Obesity, vol. 14, no. 8, pp. 1383–1391, 2006.
[8]
H. M. Aljadani, D. Sibbritt, A. Patterson, and C. E. Collins, “The Australian Recommended Food Score did not predict weight gain in mid-age Australian women during six year of follow-up,” The Australian and New Zealand Journal of Public Health, vol. 37, pp. 322–328, 2013.
[9]
W. Brown, L. Bryson, J. Byles et al., “Women's health Australia: establishment of the Australian longitudinal study on women's health,” Journal of Women's Health, vol. 5, no. 5, pp. 467–472, 1996.
[10]
W. J. Brown, S. G. Trost, A. Bauman, K. Mummery, and N. Owen, “Test-retest reliability of four physical activity measures used in population surveys,” Journal of Science and Medicine in Sport, vol. 7, no. 2, pp. 205–215, 2004.
[11]
W. J. Brown and A. E. Bauman, “Comparison of estimates of population levels of physical activity using two measures,” Australian and New Zealand Journal of Public Health, vol. 24, no. 5, pp. 520–525, 2000.
[12]
A. M. Hodge, D. R. English, K. O'Dea et al., “Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid,” American Journal of Clinical Nutrition, vol. 86, no. 1, pp. 189–197, 2007.
[13]
A. Hodge, A. J. Patterson, W. J. Brown, P. Ireland, and G. Giles, “The Anti Cancer Council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation,” Australian and New Zealand Journal of Public Health, vol. 24, no. 6, pp. 576–583, 2000.
[14]
P. Ireland, D. Jolley, G. Giles, et al., “Development of the Melbourne FFQ: a food frequency questionnaire for use in an Australian prospective study involving an ethnically diverse,” Asia Pacific Journal of Clinical Nutrition, vol. 3, pp. 19–131, 1994.
[15]
A. K. Kant, A. Schatzkin, B. I. Graubard, and C. Schairer, “A prospective study of diet quality and mortality in women,” Journal of the American Medical Association, vol. 283, no. 16, pp. 2109–2115, 2000.
[16]
“A Guide to Healthy Eating,” http://www.health.gov.au/internet/main/publishing.nsf/Content/health-pubhlth-strateg-food-guide-index.htm.
[17]
National Health and Medical Research Council, Australian Dietary Guidelines, National Health and Medical Research Council, Canberra, Australia, 2013.
[18]
Nutrition and Your Health: Dietary Guidelines for Americans: Home and Garden Bulletin, vol. 232, U.S. Departments of Agriculture and Health and Human Services, Washington, DC, USA, 4th edition.
[19]
W. N. Schofield, “Predicting basal metabolic rate, new standards and review of previous work,” Human Nutrition, vol. 39, supplement 1, pp. 5–41, 1985.
[20]
A. E. Black, “Critical evaluation of energy intake using the Goldberg cut-off for energy intake:basal metabolic rate. A practical guide to its calculation, use and limitations,” International Journal of Obesity, vol. 24, no. 9, pp. 1119–1130, 2000.
[21]
J. Vioque, T. Weinbrenner, A. Castelló, L. Asensio, and M. Garcia de la Hera, “Intake of fruits and vegetables in relation to 10-year weight gain among Spanish adults,” Obesity, vol. 16, no. 3, pp. 664–670, 2008.
[22]
H. S. Kahn, L. M. Tatham, C. Rodriguez, E. E. Calle, M. J. Thun, and C. W. Heath Jr., “Stable behaviors associated with adults' 10-year change in body mass index and likelihood of gain at the waist,” American Journal of Public Health, vol. 87, no. 5, pp. 747–754, 1997.
[23]
B. J. Rolls, J. A. Ello-Martin, and B. C. Tohill, “What can intervention studies tell us about the relationship between fruit and vegetable consumption and weight management?” Nutrition Reviews, vol. 62, no. 1, pp. 1–17, 2004.
[24]
J. A. Ello-Martin, L. S. Roe, J. H. Ledikwe, A. M. Beach, and B. J. Rolls, “Dietary energy density in the treatment of obesity: a year-long trial comparing 2 weight-loss diets,” American Journal of Clinical Nutrition, vol. 85, no. 6, pp. 1465–1477, 2007.
[25]
D. S. Sartorelli, L. J. Franco, and M. A. Cardoso, “High intake of fruits and vegetables predicts weight loss in Brazilian overweight adults,” Nutrition Research, vol. 28, no. 4, pp. 233–238, 2008.
[26]
M. K. Morrison, D. Koh, J. M. Lowe, et al., “Postpartum diet quality in Australian women following a gestational diabetes pregnancy,” European Journal of Clinical Nutrition, vol. 66, pp. 1160–1165, 2012.
[27]
M. L. Blumfield, A. J. Hure, L. K. MacDonald-Wicks, A. J. Patterson, R. Smith, and C. E. Collins, “Disparities exist between National food group recommendations and the dietary intakes of women,” BMC Women's Health, vol. 11, article 37, 2011.
[28]
A. Hure, A. Young, R. Smith, and C. Collins, “Diet and pregnancy status in Australian women,” Public Health Nutrition, vol. 12, no. 6, pp. 853–861, 2009.
[29]
M. J. Hutchesson, J. Hulst, and C. E. Collins, “Weight management interventions targeting young women: a systematic review,” Journal of the Academy of Nutrition and Dietetics, vol. 113, no. 6, pp. 795–802, 2013.
[30]
C. Lee, A. J. Dobson, W. J. Brown et al., “Cohort profile: the Australian longitudinal study on women's health,” International Journal of Epidemiology, vol. 34, no. 5, pp. 987–991, 2005.
[31]
N. W. Burton, W. Brown, and A. Dobson, “Accuracy of body mass index estimated from self-reported height and weight in mid-aged Australian women,” Australian and New Zealand Journal of Public Health, vol. 34, no. 6, pp. 620–623, 2010.