全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Ultrasound as a Tool to Assess Body Fat

DOI: 10.1155/2013/280713

Full-Text   Cite this paper   Add to My Lib

Abstract:

Ultrasound has been used effectively to assess body fat for nearly 5 decades, yet this method is not known as well as many other body composition techniques. The purpose of this review is to explain the technical principles of the ultrasound method, explain the procedures for taking a measurement and interpreting the results, evaluate the reliability and validity of this method for measuring subcutaneous and visceral adipose tissue, highlight the advantages and limitations of ultrasound relative to other body composition methods, consider its utility to clinical populations, and introduce new body composition-specific ultrasound technology. The focus of this review is adipose, although various tissue thicknesses (e.g., muscle and bone) can be measured with ultrasound. Being a portable imaging device that is capable of making fast regional estimates of body composition, ultrasound is an attractive assessment tool in instances when other methods are limited. Furthermore, much of the research suggests that it is reliable, reproducible, and accurate. The biggest limitations appear to be a lack of standardization for the measurement technique and results that are highly dependent on operator proficiency. New ultrasound devices and accompanying software designed specifically for the purpose of body composition assessment might help to minimize these limitations. 1. Introduction An accurate assessment of body composition is important to identify health risk associated with excessively high or low amounts of body fat, monitor changes in body composition associated with certain diseases, as an aid to developing weight loss or weight gain programs and assessing the effectiveness of nutrition and exercise interventions, and to monitor age-related changes in body composition. Many different methods for the assessment of body composition exist. Some methods are referred to as laboratory methods because they are typically available in only clinical and research settings. Common laboratory methods include dual-energy X-ray absorptiometry (DXA), densitometry obtained from underwater weighing or air displacement plethysmography, and hydrometry from isotope dilution. Other methods, such as skinfolds, bioelectrical impedance (BIA), anthropometric measurements, and weight?:?height indices, involve minimal and easily portable equipment; thus, they are more practical for the practitioner and categorized as field methods. Numerous review articles detailing these methods and techniques have been published. Ultrasound can also be used for body composition assessment; however,

References

[1]  P. S. W. Davies and T. J. Cole, Body Composition Techniques in Health and Disease, Cambridge University Press, Cambridge, UK, 1995.
[2]  V. H. Heyward and D. R. Wagner, Applied Body Composition Assessment, Human Kinetics Books, Champaign, Ill, USA, 2nd edition, 2004.
[3]  T. Jürim?e and A. P. Hills, Body Composition Assessment in Children and Adolescents, Karger, Basil, Switzerland, 2001.
[4]  K. J. Ellis, “Human body composition: in vivo methods,” Physiological Reviews, vol. 80, no. 2, pp. 649–680, 2000.
[5]  M. Fogelholm and W. van Marken Lichtenbelt, “Comparison of body composition methods: a literature analysis,” European Journal of Clinical Nutrition, vol. 51, no. 8, pp. 495–503, 1997.
[6]  B. H. Goodpaster, “Measuring body fat distribution and content in humans,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 5, no. 5, pp. 481–487, 2002.
[7]  S. B. Heymsfield, Z. Wang, R. N. Baumgartner, and R. Ross, “Human body composition: advances in models and methods,” Annual Review of Nutrition, vol. 17, pp. 527–558, 1997.
[8]  V. H. Heyward, “Evaluation of body composition. Current issues,” Sports Medicine, vol. 22, no. 3, pp. 146–156, 1996.
[9]  S. A. Jebb and M. Elia, “Techniques for the measurement of body composition: a practical guide,” International Journal of Obesity, vol. 17, no. 11, pp. 611–621, 1993.
[10]  S. Y. Lee and D. Gallagher, “Assessment methods in human body composition,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 11, no. 5, pp. 566–572, 2008.
[11]  D. R. Wagner and V. H. Heyward, “Techniques of body composition assessment: a review of laboratory and field methods,” Research Quarterly for Exercise and Sport, vol. 70, no. 2, pp. 135–149, 1999.
[12]  R. A. Booth, B. A. Goddard, and A. Paton, “Measurement of fat thickness in man: a comparison of ultrasound, Harpenden calipers and electrical conductivity,” British Journal of Nutrition, vol. 20, no. 4, pp. 719–725, 1966.
[13]  B. A. Bullen, F. Quaade, E. Olessen, and S. A. Lund, “Ultrasonic reflections used for measuring subcutaneous fat in humans,” Human Biology, vol. 37, no. 4, pp. 375–384, 1965.
[14]  P. Sprawls, Physical Principles of Medical Imaging, Aspen, Rockville, Md, USA, 1987.
[15]  J. T. Bushberg, J. A. Seibert, E. M. Leidholdt, and J. M. Boone, The Essential Physics of Medical Imaging, Williams & Wilkins, Philadelphia, Pa, USA, 2nd edition, 2002.
[16]  L. Silva, An Introduction to Ultrasound and the BodyMetrix System, IntelaMetrix, Livermore, Calif, USA, 2010.
[17]  J. P. Noce, “Fundamentals of diagnostic ultrasonography,” Biomedical Instrumentation and Technology, vol. 24, no. 6, pp. 456–459, 1990.
[18]  J.-C. Pineau, A.-M. Guihard-Costa, and M. Bocquet, “Validation of ultrasound techniques applied to body fat measurement: a comparison between ultrasound techniques, air displacement plethysmography and bioelectrical impedance vs. dual-energy X-ray absorptiometry,” Annals of Nutrition and Metabolism, vol. 51, no. 5, pp. 421–427, 2007.
[19]  J.-C. Pineau, L. Lalys, M. Bocquet et al., “Ultrasound measurement of total body fat in obese adolescents,” Annals of Nutrition and Metabolism, vol. 56, no. 1, pp. 36–44, 2010.
[20]  S. L. Bernstein, Y. D. Coble Jr., A. B. Eisenbrey et al., “The future of ultrasonography: report of the ultrasonography task force,” Journal of the American Medical Association, vol. 266, no. 3, pp. 406–409, 1991.
[21]  R. Gulizia, A. Uglietti, A. Grisolia, C. Gervasoni, M. Galli, and C. Filice, “Proven intra and interobserver reliability in the echographic assessments of body fat changes related to HIV associated Adipose Redistribution Syndrome (HARS),” Current HIV Research, vol. 6, no. 4, pp. 276–278, 2008.
[22]  M. Inoue, N. Bu, O. Fukuda, and H. Okumura, “Automated discrimination of tissue boundaries using ultrasound images of “ubiquitous echo”,” in Proceedings of the 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society (EMBC '07), pp. 1330–1334, August 2007.
[23]  C. Toomey, K. McCreesh, S. Leahy, and P. Jakeman, “Technical considerations for accurate measurement of subcutaneous adipose tissue thickness using B-mode ultrasound,” Ultrasound, vol. 19, no. 2, pp. 91–96, 2011.
[24]  S. F. Hawes, A. Albert, M. J. R. Healy, and J. S. Garrow, “A comparison of soft-tissue radiography, reflected ultrasound, skinfold calipers, and thigh circumference for estimating the thickness of fat overlying the iliac crest and greater trochanter,” Proceedings of the Nutrition Society, vol. 31, no. 3, pp. 91A–92A, 1972.
[25]  L. W. Weiss and F. C. Clark, “The use of B-mode ultrasound for measuring subcutaneous fat thickness on the upper arms,” Research Quarterly for Exercise and Sport, vol. 56, no. 1, pp. 77–81, 1985.
[26]  G. A. Borkan, D. E. Hults, J. Cardarelli, and B. A. Burrows, “Comparison of ultrasound and skinfold measurements in assessment of subcutaneous and total fatness,” American Journal of Physical Anthropology, vol. 58, no. 3, pp. 307–313, 1982.
[27]  M. T. Fanelli and R. J. Kuczmarski, “Ultrasound as an approach to assessing body composition,” American Journal of Clinical Nutrition, vol. 39, no. 5, pp. 703–709, 1984.
[28]  E. M. Haymes, H. M. Lundegren, J. L. Loomis, and E. R. Buskirk, “Validity of the ultrasonic technique as a method of measuring subcutaneous adipose tissue,” Annals of Human Biology, vol. 3, no. 3, pp. 245–251, 1976.
[29]  A. W. Sloan, “Estimation of body fat in young men,” Journal of Applied Physiology, vol. 23, no. 3, pp. 311–315, 1967.
[30]  R. J. Kuczmarski, M. T. Fanelli, and G. G. Koch, “Ultrasonic assessment of body composition in obese adults: overcoming the limitations of the skinfold caliper,” American Journal of Clinical Nutrition, vol. 45, no. 4, pp. 717–724, 1987.
[31]  S. Leahy, C. Toomey, K. McCreesh, C. O'Neill, and P. Jakeman, “Ultrasound measurement of subcutaneous adipose tissue thickness accurately predicts total and segmental body fat of young adults,” Ultrasound in Medicine and Biology, vol. 38, no. 1, pp. 28–34, 2012.
[32]  P. A. Volz and S. M. Ostrove, “Evaluation of a portable ultrasonoscope in assessing the body composition of college-age women,” Medicine & Science in Sports & Exercise, vol. 16, no. 1, pp. 97–102, 1984.
[33]  T. Abe, M. Kondo, Y. Kawakami, and T. Fukunaga, “Prediction equations for body composition of Japanese adults by B-mode ultrasound,” American Journal of Human Biology, vol. 6, no. 2, pp. 161–170, 1994.
[34]  K. Saito, S. Nakaji, T. Umeda, T. Shimoyama, K. Sugawara, and Y. Yamamoto, “Development of predictive equations for body density of sumo wrestlers using B-mode ultrasound for the determination of subcutaneous fat thickness,” British Journal of Sports Medicine, vol. 37, no. 2, pp. 144–148, 2003.
[35]  R. Eston, R. Evans, and F. Fu, “Estimation of body composition in Chinese and British men by ultrasonographic assessment of segmental adipose tissue volume,” British Journal of Sports Medicine, vol. 28, no. 1, pp. 9–13, 1994.
[36]  T. Midorikawa, M. Ohta, Y. Hikihara, S. Torii, M. G. Bemben, and S. Sakamoto, “Prediction and validation of total and regional fat mass by B-mode ultrasound in Japanese pre-pubertal children,” British Journal of Nutrition, vol. 106, no. 6, pp. 944–950, 2011.
[37]  F. Armellini, M. Zamboni, L. Rigo et al., “The contribution of sonography to the measurement of intra-abdominal fat,” Journal of Clinical Ultrasound, vol. 18, no. 7, pp. 563–567, 1990.
[38]  F. Armellini, M. Zamboni, L. Rigo et al., “Sonography detection of small intra-abdominal fat variations,” International Journal of Obesity, vol. 15, no. 12, pp. 847–852, 1991.
[39]  F. Armellini, M. Zamboni, R. Robbi et al., “Total and intra-abdominal fat measurements by ultrasound and computerized tomography,” International Journal of Obesity, vol. 17, no. 4, pp. 209–214, 1993.
[40]  R. Suzuki, S. Watanabe, Y. Hirai et al., “Abdominal wall fat index, estimated by ultrasonography, for assessment of the ratio of visceral fat to subcutaneous fat in the abdomen,” American Journal of Medicine, vol. 95, no. 3, pp. 309–314, 1993.
[41]  T. Abe, Y. Kawakami, M. Sugita, K. Yoshikawa, and T. Fukunaga, “Use of B-mode ultrasound for visceral fat mass evaluation: comparisons with magnetic resonance imaging,” Applied Human Science, vol. 14, no. 3, pp. 133–139, 1995.
[42]  T. Abe, F. Tanaka, Y. Kawakami, K. Yoshikawa, and T. Fukunaga, “Total and segmental subcutaneous adipose tissue volume measured by ultrasound,” Medicine & Science in Sports & Exercise, vol. 28, no. 7, pp. 908–912, 1996.
[43]  S. E. Taksali, S. Caprio, J. Dziura et al., “High visceral and low abdominal subcutaneous fat stores in the obese adolescent: a determinant of an adverse metabolic phenotype,” Diabetes, vol. 57, no. 2, pp. 367–371, 2008.
[44]  A. Bazzocchi, G. Filonzi, F. Ponti et al., “Accuracy, reproducibility and repeatability of ultrasonography in the assessment of abdominal adiposity,” Academic Radiology, vol. 18, no. 9, pp. 1133–1143, 2011.
[45]  A. Shuster, M. Patlas, J. H. Pinthus, and M. Mourtzakis, “The clinical importance of visceral adiposity: a critical review of methods for visceral adipose tissue analysis,” British Journal of Radiology, vol. 85, no. 1009, pp. 1–10, 2012.
[46]  G. Iacobellis, “Imaging of visceral adipose tissue: an emerging diagnostic tool and therapeutic target,” Current Drug Targets, vol. 5, no. 4, pp. 345–353, 2005.
[47]  I. S. Vlachos, A. Hatziioannou, A. Perelas, and D. N. Perrea, “Sonographic assessment of regional adiposity,” American Journal of Roentgenology, vol. 189, no. 6, pp. 1545–1553, 2007.
[48]  D. Mayans, M. S. Cartwright, and F. O. Walker, “Neuromuscular ultrasonography: quantifying muscle and nerve measurements,” Physical Medicine and Rehabilitation Clinics of North America, vol. 23, no. 1, pp. 133–148, 2012.
[49]  J. Karjalainen, O. Riekkinen, J. T?yr?s, H. Kr?ger, and J. Jurvelin, “Ultrasonic assessment of cortical bone thickness in vitro and in vivo,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 55, no. 10, pp. 2191–2197, 2008.
[50]  T. R. Ackland, T. G. Lohman, J. Sundgot-Borgen et al., “Current status of body composition assessment in sport: review and position statement on behalf of the Ad Hoc research working group on body composition health and performance, under the auspices of the I.O.C. medical commission,” Sports Medicine, vol. 42, no. 3, pp. 227–249, 2012.
[51]  T. G. Lohman, A. F. Roche, and R. Martorell, Anthropometric Standardization Reference Manual, Human Kinetics Books, Champaign, Ill, USA, 1988.
[52]  S. Semiz, E. ?zg?ren, and N. Sabir, “Comparison of ultrasonographic and anthropometric methods to assess body fat in childhood obesity,” International Journal of Obesity, vol. 31, no. 1, pp. 53–58, 2007.
[53]  A. Z. Pereira, J. S. Marchini, G. Carneiro, C. H. Arasaki, and M. T. Zanella, “Lean and fat mass loss in obese patients before and after Roux-en-Y gastric bypass: a new application for ultrasound technique,” Obesity Surgery, vol. 22, no. 4, pp. 597–601, 2012.
[54]  J. L. Bartha, P. Marín-Segura, N. L. González-González, F. Wagner, M. Aguilar-Diosdado, and B. Hervias-Vivancos, “Ultrasound evaluation of visceral fat and metabolic risk factors during early pregnancy,” Obesity, vol. 15, no. 9, pp. 2233–2239, 2007.
[55]  T. Kinoshita and M. Itoh, “Longitudinal variance of fat mass deposition during pregnancy evaluated by ultrasonography: the ratio of visceral fat to subcutaneous fat in the abdomen,” Gynecologic and Obstetric Investigation, vol. 61, no. 2, pp. 115–118, 2006.
[56]  E. A. McCarthy, B. J. G. Strauss, S. P. Walker, and M. Permezel, “Determination of maternal body composition in pregnancy and its relevance to perinatal outcomes,” Obstetrical and Gynecological Survey, vol. 59, no. 10, pp. 731–742, 2004.
[57]  R. R. Emmons, C. E. Garber, C. M. Cirnigliaro, S. C. Kirshblum, A. M. Spungen, and W. A. Bauman, “Assessment of measures for abdominal adiposity in persons with spinal cord injury,” Ultrasound in Medicine and Biology, vol. 37, no. 5, pp. 734–741, 2011.
[58]  I. T. Campbell, T. Watt, D. Withers et al., “Muscle thickness, measured with ultrasound, may be an indicator of lean tissue wasting in multiple organ failure in the presence of edema,” American Journal of Clinical Nutrition, vol. 62, no. 3, pp. 533–539, 1995.
[59]  M. M. M. Guimar?es, A. R. De Oliveira Jr., M. G. Penido et al., “Ultrasonographic measurement of intra-abdominal fat thickness in HIV-infected patients treated or not with antiretroviral drugs and its correlation to lipid and glycemic profiles,” Annals of Nutrition and Metabolism, vol. 51, no. 1, pp. 35–41, 2007.
[60]  E. Fliers, H. P. Sauerwein, J. A. Romijn et al., “HIV-associated adipose redistribution syndrome as a selective autonomic neuropathy,” The Lancet, vol. 362, no. 9397, pp. 1758–1760, 2003.
[61]  J. C. Pineau, L. Lalys, M. Pellegrini, and N. C. Battistini, “Body fat mass assessment: a comparison between an ultrasound-based device and a Discovery A model of DXA,” ISRN Obesity, vol. 2013, Article ID 462394, 5 pages, 2013.
[62]  A. S. Jackson and M. L. Pollock, “Practical assessment of body composition,” Physician and Sportsmedicine, vol. 13, no. 5, pp. 76–90, 1985.
[63]  J. Lyon, R. Drew, and H. MacRae, “Comparison of skinfold thickness measures with ultrasound imaging to determine body composition,” in Proceedings of the 26th Annual Meeting of the Southwest Chapter of the American College of Sports Medicine, San Diego, Calif, USA, 2006.
[64]  A. C. Utter and M. E. Hager, “Evaluation of ultrasound in assessing body composition of high school wrestlers,” Medicine & Science in Sports & Exercise, vol. 40, no. 5, pp. 943–949, 2008.
[65]  L. Ulbricht, E. B. Neves, W. L. Ripka, and E. F. R. Romaneli, “Comparison between body fat measurements obtained by portable ultrasound and caliper in young adults,” in Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS '12), pp. 1952–1955, 2012.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133