全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Applications of BMI or BSI: Differences and Revisions According to Age and Height

DOI: 10.1155/2010/647163

Full-Text   Cite this paper   Add to My Lib

Abstract:

Validation of body-mass relationships requires a careful statistical analysis of data of normal weight individuals. BMI (ratio between body mass and square of body height) and BSI values (ratio between mass and cube of body height) have been calculated for 99 persons with ages between 1 day and 76 years. These BMI or BSI values have been used for least squares fits yielding mean BMI or BSI values, their variances (providing precision), and average deviations of individual BMI/BSI values from the BMI/BSI means. The latter allows limits to over- and underweight. For adults we found mean values of BSI of 12.36 and confirmed 21.7 for the mean BMI; but the BSI was 1.4 times more precise than the BMI. For children shorter than 1.3?m and younger than 8 years we found the BMI average of 15.9 and over-/underweight limits of 17.4/14.4 being significantly smaller than and incompatible with the recommended BMI values. 1. Introduction Overweight and obesity are serious health problems [1, 2] which have increased during the past decades [1, 3] in the US, in other “Western” countries [4], and globally [5]. They tend to cause health damages with potentially immense expenditures [5, 6]. An appropriate definition of overweight and obesity is essential to the Public Health community for designing and monitoring interventions. Overt obesity can be recognized without measurement. However, proper assessment of moderate overweight is essential to targeting “action” thresholds. Currently, the Body Mass Index BMI is used for defining overweight and obesity. The BMI, given in units kg/m2, has the dimension of an area density, the average value of which, for normal, healthy subjects, has so far been recommended as 21.7 [2, 6]. In the past, also the Broca formula [7] was used, a linear mass versus height relationship, which implies a linear density (kg/m), which may be relevant for describing a hair, but not a human body. The BMI has been recommended for use among all age groups from childhood through adulthood [2]. Analyzing the relationship between BMI and adiposity, Revicki and Israel state “... there exists considerable error associated with the prediction of body fat, using different BMIs” [8]. Overweight is defined by a BMI between 25.0 and 29.9 [2] and underweight by a BMI below 18.5. People with BMI greater than 30.0 are categorized as obese. “Such terminology is useful…yet remains imperfect” [2]. As “… many physicians and patients find it” (the BMI) “difficult to interpret” [3], a useful body mass relationship, indeed, should have dimensions relevant to the human body, a

References

[1]  J. M. Olefsky, Obesity. Harrison's Principles of Internal Medicine, McGraw–Hill, New York, NY, USA, 13th edition, 1994.
[2]  R. J. Kuczmarski and K. M. Flegal, “Criteria for definition of overweight in transition: background and recommendations for the United States,” American Journal of Clinical Nutrition, vol. 72, no. 5, pp. 1074–1081, 2000.
[3]  W. C. Willett, W. H. Dietz, and G. A. Colditz, “Guidelines for healthy weight,” The New England Journal of Medicine, vol. 341, no. 6, pp. 427–434, 1999.
[4]  J. S. Flier, Adipositas. Harrison's Principles of Internal Medicine, McGraw–Hill, New York, NY, USA, 15th edition, 2001.
[5]  P. Prasch, “Wenn Fett zur Sucht wird,” Spektrum der Wissenschaft, vol. 7, pp. 86–87, 2003 (German).
[6]  B. Bachtler, “Gewogen und zu schwer befunden,” Spektrum der Wissenschaft, vol. 5, pp. 46–49, 2003 (German).
[7]  K. Gesundheit, Gewicht und Gr??e, Kiepenheuer & Witsch, K?ln, Germany, 1992.
[8]  D. A. Revicki and R. G. Israel, “Relationship between body mass indices and measures of body adiposity,” American Journal of Public Health, vol. 76, no. 8, pp. 992–994, 1986.
[9]  H. St?cker, Taschenbuch der Physik, Harri Deutsch, Frankfurt, Germany, 1994.
[10]  O. W. B. Schult, L. E. Feinendegen, W. W. Shreeve, and R. N. Pierson Jr., “Optimal use of weight and height for evaluation of obesity and other disorders,” The International Journal of Body Composition Research, vol. 5, pp. 153–155, 2007.
[11]  M. P. Pai and F. P. Paloucek, “The origin of the “ideal” body weight equations,” Annals of Pharmacotherapy, vol. 34, no. 9, pp. 1066–1069, 2000.
[12]  P. R. Bevington, Data Reduction and Error Analysis for the Natural Sciences, McGraw–Hill, New York, NY, USA, 1969.
[13]  K. M. Flegal, “Ratio of actual to predicted weight as an alternative to a power-type weight-height index (Benn index),” American Journal of Clinical Nutrition, vol. 51, no. 4, pp. 540–547, 1990.
[14]  W. W. Shreeve and R. N. Pierson Jr., “Element metabolism and body composition,” in Molecular Nuclear Medicine, The Challenge of Genomics and Proteomics to Clinical Practice, L. E. Feinendegen, W. W. Shreeve, W. C. Eckelmann, Y. W. Bahk, and H. N. Wagner, Eds., pp. 252–300, Springer, Berlin, Germany, 2003.
[15]  J. L. Baker, L. W. Olsen, and T. I. A. S?rensen, “Childhood body-mass index and the risk of coronary heart disease in adulthood,” The New England Journal of Medicine, vol. 357, no. 23, pp. 2329–2337, 2007.
[16]  C. D. Florey, “The use and interpretation of ponderal index and other weight-height ratios in epidemiological studies,” Journal of Chronic Diseases, vol. 23, no. 2, pp. 93–103, 1970.
[17]  T. Khosla and C. R. Lowe, “Indices of obesity derived from body weight and height,” British Journal of Preventive & Social Medicine, vol. 21, no. 3, pp. 122–128, 1967.
[18]  F. J. Walther and L. H. J. Ramaekers, “The ponderal index as a measure of the nutritional status at birth and its relation to some aspects of neonatal morbidity,” Journal of Perinatal Medicine, vol. 10, no. 1, pp. 42–47, 1982.
[19]  J. G. Eriksson, T. Forsén, J. Tuomilehto, C. Osmond, and D. J. P. Barker, “Early growth and coronary heart disease in later life: longitudinal study,” British Medical Journal, vol. 322, no. 7292, pp. 949–953, 2001.
[20]  J. Fayyaz, “Ponderal index,” Journal of the Pakistan Medical Association, vol. 55, no. 6, pp. 228–229, 2005.
[21]  S. K. Bhargava, H. S. Sachdev, and H. S. Sachdev, “Relation of serial changes in childhood body-mass index to impaired glucose tolerance in young adulthood,” The New England Journal of Medicine, vol. 350, no. 9, pp. 865–875, 2004.
[22]  B. R. Celli, C. G. Cote, and C. G. Cote, “The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease,” The New England Journal of Medicine, vol. 350, no. 10, pp. 1005–1012, 2004.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133