Background. Although there is a reported association between lifestyle factors and metabolic syndrome, very few studies have used national level data restricted to the African Americans (AAs) in the United States (US). Methods. A cross-sectional evaluation was conducted using the National Health and Nutrition Examination Survey from 1999 to 2006 including men and nonpregnant women of 20 years or older. Multiple logistic regression models were constructed to evaluate the association between lifestyle factors and metabolic syndrome. Results. AA women had a higher prevalence of metabolic syndrome (39.43%) than AA men (26.77%). After adjusting for sociodemographic factors, no significant association was found between metabolic syndrome and lifestyle factors including alcohol drinking, cigarette smoking, and physical activity. Age and marital status were significant predictors for metabolic syndrome. With increase in age, both AA men and AA women were more likely to have metabolic syndrome (AA men: , 95% CI 1.04–1.06, AA women: , 95% CI 1.04–1.07). Single AA women were less likely to have metabolic syndrome than married women ( , 95% CI 0.43–0.99). Conclusion. Lifestyle factors had no significant association with metabolic syndrome but age and marital status were strong predictors for metabolic syndrome in AAs in the US. 1. Introduction Metabolic syndrome refers to a cluster of known disorders that increase the risk for morbidity and mortality from cardiovascular disease (CVD) and type 2 diabetes [1, 2]. Risk for type 2 diabetes mellitus increases five- to ninefold with metabolic syndrome [1]. Metabolic syndrome is defined as the occurrence of 3 of any of the 5 following factors: obesity, elevated triglyceride (TG), low HDL-C, elevated blood pressure (BP), and elevated fasting glucose (FG) [3]. Lifestyle factors such as alcohol consumption, cigarette smoking, and physical activity have been reported to affect an individual’s metabolic profile [4, 5]. A large population based study in the United States reported that mild to moderate alcohol consumption of alcohol was associated with a favorable influence on lipids, waist circumference, and fasting insulin in comparison to nondrinkers [4]. However, increased alcohol consumption has also been reported to be associated with hypertension [5]. Smoking has been associated with a negative lipid profile [6], hypertension [7, 8], and a higher risk of all forms of CVD [9]. Studies have also reported an inverse relationship between physical activity and certain components of metabolic syndrome such as waist
References
[1]
H. M. Lakka, D. E. Laaksonen, T. A. Lakka et al., “The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men,” Journal of the American Medical Association, vol. 288, no. 21, pp. 2709–2716, 2002.
[2]
D. E. Laaksonen, H. M. Lakka, L. K. Niskanen, G. A. Kaplan, J. T. Salonen, and T. A. Lakka, “Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study,” American Journal of Epidemiology, vol. 156, no. 11, pp. 1070–1077, 2002.
[3]
S. M. Grundy, J. I. Cleeman, S. R. Daniels et al., “Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement,” Circulation, vol. 112, no. 17, pp. 2735–2752, 2005.
[4]
M. S. Freiberg, H. J. Cabral, T. C. Heeren, R. S. Vasan, and R. C. Ellison, “Alcohol consumption and the prevalence of the metabolic syndrome in the U.S. A cross-sectional analysis of data from the Third National Health and Nutrition Examination Survey,” Diabetes Care, vol. 27, no. 12, pp. 2954–2959, 2004.
[5]
A. L. Klatsky, “Alcohol-associated hypertension when one drinks makes a difference,” Hypertension, vol. 44, no. 6, pp. 805–806, 2004.
[6]
C. Kong, L. Nimmo, T. Elatrozy et al., “Smoking is associated with increased hepatic lipase activity, insulin resistance, dyslipidaemia and early atherosclerosis in Type 2 diabetes,” Atherosclerosis, vol. 156, no. 2, pp. 373–378, 2001.
[7]
J. M. Elliott and F. O. Simpson, “Cigarettes and accelerated hypertension,” The New Zealand Medical Journal, vol. 91, pp. 447–449, 1980.
[8]
A. R. Dyer, J. Stamler, and R. B. Shekelle, “Pulse pressure - II. Factors associated with follow-up values in three Chicago epidemiologic studies,” Journal of Chronic Diseases, vol. 35, no. 4, pp. 275–282, 1982.
[9]
D. M. Burns, “Epidemiology of smoking-induced cardiovascular disease,” Progress in Cardiovascular Diseases, vol. 46, pp. 11–29, 2003.
[10]
K. L. Rennie, N. McCarthy, S. Yazdgerdi, M. Marmot, and E. Brunner, “Association of the metabolic syndrome with both vigorous and moderate physical activity,” International Journal of Epidemiology, vol. 32, no. 4, pp. 600–606, 2003.
[11]
K. Waller, J. Kaprio, and U. M. Kujala, “Associations between long-term physical activity, waist circumference and weight gain: a 30-year longitudinal twin study,” International Journal of Obesity, vol. 32, no. 2, pp. 353–361, 2008.
[12]
T. T. Fung, F. B. Hu, J. Yu, et al., “Leisure time physical activity, television watching, and plasma biomarkers of obesity and cardiovascular disease risk,” American Journal of Epidemiology, vol. 152, pp. 1171–1178, 2000.
[13]
J. Skoumas, C. Pitsavos, D. B. Panagiotakos et al., “Physical activity, high density lipoprotein cholesterol and other lipids levels, in men and women from the ATTICA study,” Lipids in Health and Disease, vol. 2, article 1, pp. 1–7, 2003.
[14]
R. S. Paffenbarger Jr., A. L. Wing, R. T. Hyde, and D. L. Jung, “Physical activity and incidence of hypertension in college alumni,” American Journal of Epidemiology, vol. 117, no. 3, pp. 245–257, 1983.
[15]
R. S. Paffenbarger Jr., D. L. Jung, and R. W. Leung, “Physical activity and hypertension: an epidemiological view,” Annals of Internal Medicine, vol. 23, pp. 319–327, 1991.
[16]
G. L. Burke, P. J. Savage, and T. A. Manolio, “Correlates of obesity in young black and Caucasian women: the CARDIA Study,” American Journal of Public Health, vol. 82, pp. 1621–1625, 1992.
[17]
T. Richardson, “Health status and health behaviors of inner city older African Americans: health disparities in wellness center participants,” The Journal of Multicultural Nursing & Health, vol. 3, pp. 62–67, 1993.
[18]
L. Carter-Edwards, M. J. Bynoe, and L. P. Svetkey, “Knowledge of diet and blood pressure among African Americans: Use of focus groups for questionnaire development,” Ethnicity and Disease, vol. 8, no. 2, pp. 184–197, 1998.
[19]
G. D. Foster, T. A. Wadden, and R. A. Vogt, “Energy expenditure in obese african american and caucasian women,” Obesity Research, vol. 5, no. 1, pp. 1–8, 1997.
[20]
J. M. Jakicic and R. R. Wing, “Differences in resting energy expenditure in African-American vs Caucasian overweight females,” International Journal of Obesity, vol. 22, no. 3, pp. 236–242, 1998.
[21]
W. D. Hall, L. T. Clark, N. K. Wenger, and J. T. Wright Jr., “African-American Lipids and Cardiovascular council. The metabolic syndrome in AA’s: a review,” Ethnicity and Disease, vol. 13, pp. 414–428, 2003.
[22]
Centers for Disease Control and Prevention, “National Health and Nutrition Examination Survey, 2007-2008,” http://cdc.gov/nchs/data/nhanes/nhanes_07_08/overviewbrochure_0708.pdf.
[23]
US Department of Agriculture, United States Department of Health, and Human Services, “Alcoholic beverages,” in Dietary Guidelines for Americans, chapter 9, pp. 43–46, Government Printing Office, Washington, DC, USA, 2005.
[24]
US Department of Health and Human Services, “Physical activity guidelines for Americans,” 2008, http://www.health.gov/paguidelines/pdf/paguide.pdf.
[25]
R. B. Ervin, “Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006,” National Health Statistics Reports, no. 13, pp. 1–7, 2009.
[26]
C. O. Airhihenbuwa, S. Kumanyika, T. D. Agurs, A. Lowe, D. Saunders, and C. B. Morssink, “Cultural aspects of African American eating patterns,” Ethnicity and Health, vol. 1, no. 3, pp. 245–260, 1996.
[27]
C. L. Ogden, M. M. Lamb, M. D. Carroll, and K. M. Flegal, “Obesity and socioeconomic status in adults: United States, 2005–2008,” NCHS Data Brief, vol. 50, pp. 1–8, 2010.
[28]
D. Umberson, “Gender, marital status and the social control of health behavior,” Social Science and Medicine, vol. 34, no. 8, pp. 907–917, 1992.
[29]
J. S. Tucker and S. L. Anders, “Social control and health behaviors in marriage,” Journal of Applied Social Psychology, vol. 31, pp. 467–485, 2001.
[30]
W. M. Troxel, K. A. Matthews, L. C. Gallo, and L. H. Kuller, “Marital quality and occurrence of the metabolic syndrome in women,” Archives of Internal Medicine, vol. 165, no. 9, pp. 1022–1027, 2005.
[31]
J. R. Greenfield, K. Samaras, A. B. Jenkins, P. J. Kelly, T. D. Spector, and L. V. Campbell, “Moderate alcohol consumption, dietary fat composition, and abdominal obesity in women: evidence for gene-environment interaction,” Journal of Clinical Endocrinology and Metabolism, vol. 88, no. 11, pp. 5381–5386, 2003.
[32]
A. Z. Fan, M. Russell, T. Naimi, et al., “Patterns of alcohol consumption and the metabolic syndrome,” The Journal of Clinical Endocrinology & Metabolism, vol. 93, pp. 3833–3838, 2008.
[33]
I. Nj?lstad, E. Arnesen, and P. G. Lund-Larsen, “Smoking, serum lipids, blood pressure, and sex differences in myocardial infarction: a 12-year follow-up of the Finnmark study,” Circulation, vol. 93, no. 3, pp. 450–456, 1996.
[34]
K. Shuval, J. DeVahl, L. Tong, N. Gimpel, J. J. Lee, and M. J. DeHaven, “Anthropometric measures, presence of metabolic syndrome, and adherence to physical activity guidelines among African American church members, Dallas, Texas, 2008,” Preventing Chronic Disease, vol. 8, article A18, 2011.
[35]
S. Zhu, M. P. St.-Onge M.-P., S. Heshka, and S. B. Heymsfield, “Lifestyle behaviors associated with lower risk of having the metabolic syndrome,” Metabolism, vol. 53, no. 11, pp. 1503–1511, 2004.
[36]
E. S. Ford, H. W. Kohl, A. H. Mokdad, and U. A. Ajani, “Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults,” Obesity Research, vol. 13, no. 3, pp. 608–614, 2005.
[37]
M. L. Irwin, B. E. Ainsworth, E. J. Mayer-Davis, C. L. Addy, R. R. Pate, and J. L. Durstine, “Physical activity and the metabolic syndrome in a tri-ethnic sample of women,” Obesity Research, vol. 10, no. 10, pp. 1030–1037, 2002.
[38]
O. Clerc, D. Nanchen, J. Cornuz et al., “Alcohol drinking, the metabolic syndrome and diabetes in a population with high mean alcohol consumption,” Diabetic Medicine, vol. 27, no. 11, pp. 1241–1249, 2010.
[39]
L. L. N. Husemoen, T. J?rgensen, K. Borch-Johnsen, T. Hansen, O. Pedersen, and A. Linneberg, “The association of alcohol and alcohol metabolizing gene variants with diabetes and coronary heart disease risk factors in a white population,” PLoS ONE, vol. 5, no. 8, article e11735, 2010.
[40]
E. S. Ford, H. W. Kohl III, A. H. Mokdad, and U. A. Ajani, “Sedentary behavior, physical activity, and the metabolic syndrome among U.S. adults,” Obesity Research, vol. 13, no. 3, pp. 608–614, 2005.