Plant Polyphenols and Oxidative Metabolites of the Herbal Alkenylbenzene Methyleugenol Suppress Histone Deacetylase Activity in Human Colon Carcinoma Cells
Evidence has been provided that diet and environmental factors directly influence epigenetic mechanisms associated with cancer development in humans. The inhibition of histone deacetylase (HDAC) activity and the disruption of the HDAC complex have been recognized as a potent strategy for cancer therapy and chemoprevention. In the present study, we investigated whether selected plant constituents affect HDAC activity or HDAC1 protein status in the human colon carcinoma cell line HT29. The polyphenols (?)-epigallocatechin-3-gallate (EGCG) and genistein (GEN) as well as two oxidative methyleugenol (ME) metabolites were shown to inhibit HDAC activity in intact HT29 cells. Concomitantly, a significant decrease of the HDAC1 protein level was observed after incubation with EGCG and GEN, whereas the investigated ME metabolites did not affect HDAC1 protein status. In conclusion, dietary compounds were found to possess promising HDAC-inhibitory properties, contributing to epigenetic alterations in colon tumor cells, which should be taken into account in further risk/benefit assessments of polyphenols and alkenylbenzenes. 1. Introduction Cancer is one of the most causes of death in industrial countries. Especially the genesis of tumors of the gastrointestinal tract seems to depend on genetic predisposition, environmental factors, and diet [1]. Evidence has been provided that these factors directly influence epigenetic mechanisms associated with cancer development in humans. Epigenetic mechanisms comprise modulation in DNA methylation, histone modification, and noncoding RNA [2]. DNA methylation/demethylation and histone modifications are controlled by specific enzymes, such as DNA methyltransferase (DNMT), histone acetyltransferase (HAT), and histone deacetylase (HDAC) [3, 4]. One of the major posttranslational epigenetic regulations of gene expression is the modulation of histones via acetylation and deacetylation [5]. HDACs belong to the group of zinc-binding metalloenzymes catalyzing the elimination of acetyl groups from histone tails. Deacetylation results in the tighter wrapping of DNA around the histone core leading to chromatin condensation. Based on this cellular event the accessibility of transcription factors and gene expression is decreased. HDACs are involved in several cellular regulation processes such as transcription, cell cycle progressing, gene silencing, cell differentiation, DNA-replication and DNA-damage response [5, 6]. Up to now, 18 human HDAC enzymes are characterized and classified into four classes: class I HDACs share sequence similarity
References
[1]
J. Rafter, M. Govers, P. Martel et al., “PASSCLAIM-diet-related cancer,” European Journal of Nutrition, vol. 43, no. 2, pp. II47–II84, 2004.
[2]
A. Link, F. Balaguer, and A. Goel, “Cancer chemoprevention by dietary polyphenols: promising role for epigenetics,” Biochemical Pharmacology, vol. 80, no. 12, pp. 1771–1792, 2010.
[3]
A. Shilatifard, “Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression,” Annual Review of Biochemistry, vol. 75, pp. 243–269, 2006.
[4]
L. Sui, Y. Wang, L. H. Ju, et al., “Epigenetic regulation of reelin and brain-derived neurotrophic factor genes in long-tern potentiation in rat medial prefrontal cortex,” Neurobiology of Learning Memory, vol. 97, no. 4, pp. 425–440, 2012.
[5]
P. A. Marks, V. M. Richon, T. Miller, and W. K. Kelly, “Histone deacetylase inhibitors,” Advances in Cancer Research, vol. 91, pp. 137–168, 2004.
[6]
M. Dokmanovic and P. A. Marks, “Prospects: histone deacetylase inhibitors,” Journal of Cellular Biochemistry, vol. 96, no. 2, pp. 293–304, 2005.
[7]
L. Gao, M. A. Cueto, F. Asselbergs, and P. Atadja, “Cloning and functional characterization of HDAC11, a novel member of the human histone deacetylase family,” Journal of Biological Chemistry, vol. 277, no. 28, pp. 25748–25755, 2002.
[8]
P. Rajendran, E. Ho, D. E. Williams, et al., “Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells,” Clinical Epigenetics, vol. 3, no. 1, p. 4, 2011.
[9]
V. S. Thakur, K. Gupta, and S. Gupta, “Green tea polyphenols causes cell cycle arrest and apoptosis in prostate cancer cells by suppressing class I histone deacetylases,” Carcinogenesis, vol. 33, no. 2, pp. 377–384, 2012.
[10]
W. Weichert, A. R?ske, S. Niesporek et al., “Class I histone deacetylase expression has independent prognostic impact in human colorectal cancer: specific role of class I histone deacetylases in vitro and in vivo,” Clinical Cancer Research, vol. 14, no. 6, pp. 1669–1677, 2008.
[11]
E. Hahnen, J. Hauke, C. Tr?nkle, et al., “Histone deacetlyase ihhibitors: possible implications for neurodegenerative disorders,” Expert Opinion on Investigational Drugs, vol. 17, pp. 169–184, 2008.
[12]
B. E. Morrison, N. Majdzadeh, and S. R. D'Mello, “Histone deacetylases: focus on the nervous system,” Cellular and Molecular Life Sciences, vol. 64, no. 17, pp. 2258–2269, 2007.
[13]
D. M. Chuang, Y. Leng, Z. Marinova, H. J. Kim, and C. T. Chiu, “Multiple roles of HDAC inhibition in neurodegenerative conditions,” Trends in Neurosciences, vol. 32, no. 11, pp. 591–601, 2009.
[14]
T. Abel and R. S. Zukin, “Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders,” Current Opinion in Pharmacology, vol. 8, no. 1, pp. 57–64, 2008.
[15]
O. Moradei, C. R. Maroun, I. Paquin, and A. Vaisburg, “Histone deacetylase inhibitors: latest developments, trends and prospects,” Current Medicinal Chemistry, vol. 5, no. 5, pp. 529–560, 2005.
[16]
W. S. Xu, R. B. Parmigiani, and P. A. Marks, “Histone deacetylase inhibitors: molecular mechanisms of action,” Oncogene, vol. 26, no. 37, pp. 5541–5552, 2007.
[17]
M. Jung, “Inhibitors of histone deacetylase as new anticancer agents,” Current Medicinal Chemistry, vol. 8, no. 12, pp. 1505–1511, 2001.
[18]
G. G. Duthie, S. J. Duthie, and J. A. M. Kyle, “Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants,” Nutrition Research Reviews, vol. 13, no. 1, pp. 79–106, 2000.
[19]
C. S. Yang, J. M. Landau, M. T. Huang, and H. L. Newmark, “Inhibition of carcinogenesis by dietary polyphenolic compounds,” Annual Review of Nutrition, vol. 21, pp. 381–406, 2001.
[20]
M. Pandey, S. Shukla, and S. Gupta, “Promoter demethylation and chromatin remodeling by green tea polyphenols leads to re-expression of GSTP1 in human prostate cancer cells,” International Journal of Cancer, vol. 126, no. 11, pp. 2520–2533, 2010.
[21]
V. S. Thakur, K. Gupta, and S. Gupta, “Green tea polyphenols increased p53 transcriptional activity and acetylation by suppressing class I histone deacetylase,” International Journal of Oncology, vol. 41, no. 1, pp. 353–361, 2012.
[22]
M. Waldecker, T. Kautenburger, H. Daumann, C. Busch, and D. Schrenk, “Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon,” Journal of Nutritional Biochemistry, vol. 19, no. 9, pp. 587–593, 2008.
[23]
H. L. Liu, Y. Chen, G. H. Cui, and J. F. Zhou, “Curcumin, a potent anti-tumor reagent, is a novel histone deacetylase inhibitor regulating B-NHL cell line Raji proliferation,” Acta Pharmacologica Sinica, vol. 26, no. 5, pp. 603–609, 2005.
[24]
N. Kikuno, H. Shiina, S. Urakami et al., “Genistein mediated histone acetylation and demethylation activates tumor suppressor genes in prostate cancer cells,” International Journal of Cancer, vol. 123, no. 3, pp. 552–560, 2008.
[25]
I. Gardner, H. Wakazono, P. Bergin et al., “Cytochrome P450 mediated bioactivation of methyleugenol to 1'-hydroxymethyleugenol in Fischer 344 rat and human liver microsomes,” Carcinogenesis, vol. 18, no. 9, pp. 1775–1783, 1997.
[26]
S. M. F. Jeurissen, J. J. P. Bogaards, M. G. Boersma et al., “Human cytochrome P450 enzymes of importance for the bioactivation of methyleugenol to the proximate carcinogen -hydroxymethyleugenol,” Chemical Research in Toxicology, vol. 19, no. 1, pp. 111–116, 2006.
[27]
National Toxicology Program (NTP), “Toxicology and cancinogenesis studies of methyleugenol in F344/N rats and B6C3F1 mice (gavage studies),” DRAFT NTP-TR-491 98-3950, NIH, 2000.
[28]
R. L. Smith, T. B. Adams, J. Doull et al., “Safety assessment of allylalkoxybenzene derivatives used as flavouring substances—methyl eugenol and estragole,” Food and Chemical Toxicology, vol. 40, no. 7, pp. 851–870, 2002.
[29]
Scientific Committee of Food (SCF), “Opinion of the Scientific Committee of Food on Methyleugenol (4-Allyl-1, 2- dimethoxybenzene),” 2001.
[30]
A. T. Cartus, K.-H. Merz, and D. Schrenk, “Metabolism of methylisoeugenol in liver microsomes of human, rat, and bovine origin,” Drug Metabolism and Disposition, vol. 39, no. 9, pp. 1727–1733, 2011.
[31]
P. Skehan, R. Storeng, D. Scudiero et al., “New colorimetric cytotoxicity assay for anticancer-drug screening,” Journal of the National Cancer Institute, vol. 82, no. 13, pp. 1107–1112, 1990.
[32]
M. Kern, Z. Tjaden, Y. Ngiewih et al., “Inhibitors of the epidermal growth factor receptor in apple juice extract,” Molecular Nutrition & Food Research, vol. 49, no. 4, pp. 317–328, 2005.
[33]
Z. Yu, W. Li, and F. Liu, “Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells,” Cancer Letters, vol. 215, no. 2, pp. 159–166, 2004.
[34]
D. Chen and Q. Ping Dou, “Tea polyphenols and their roles in cancer prevention and chemotherapy,” International Journal of Molecular Sciences, vol. 9, no. 7, pp. 1196–1206, 2008.
[35]
V. Nandakumar, M. Vaid, and S. K. Katiyar, “(?)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells,” Carcinogenesis, vol. 32, no. 4, pp. 537–544, 2011.
[36]
S. I. Khan, P. Aumsuwan, I. A. Khan, L. A. Walker, and A. K. Dasmahapatra, “Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome,” Chemical Research in Toxicology, vol. 25, no. 1, pp. 61–73, 2012.
[37]
M. Z. Fang, D. Chen, Y. Sun, Z. Jin, J. K. Christman, and C. S. Yang, “Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy,” Clinical Cancer Research, vol. 11, no. 19, pp. 7033–7041, 2005.
[38]
Y. Li, L. Liu, L. G. Andrews, and T. O. Tollefsbol, “Genistein depletes telomerase activity through cross-talk between genetic and epigenetic mechanisms,” International Journal of Cancer, vol. 125, no. 2, pp. 286–296, 2009.
[39]
S. Majid, A. A. Dar, A. E. Ahmad et al., “BTG3 tumor suppressor gene promoter demethylation, histone modification and cell cycle arrest by genistein in renal cancer,” Carcinogenesis, vol. 30, no. 4, pp. 662–670, 2009.
[40]
T. Hong, T. Nakagawa, W. Pan et al., “Isoflavones stimulate estrogen receptor-mediated core histone acetylation,” Biochemical and Biophysical Research Communications, vol. 317, no. 1, pp. 259–264, 2004.
[41]
M. N. Clifford, “Chlorogenic acids and other cinnamates—nature, occurrence and dietary burden,” Journal of the Science of Food and Agriculture, vol. 79, no. 3, pp. 362–372, 1999.
[42]
M. R. Olthof, P. C. Hollman, and M. B. Katan, “Chlorogenic acid and caffeic acid are absorbed in humans,” Journal of Nutrition, vol. 131, no. 1, pp. 66–71, 2001.
[43]
G. H. Degen, P. Janning, P. Diel, and H. M. Bolt, “Estrogenic isoflavones in rodent diets,” Toxicology Letters, vol. 128, no. 1–3, pp. 145–157, 2002.
[44]
C. S. Yang and Z. Y. Wang, “Tea and cancer,” Journal of the National Cancer Institute, vol. 85, no. 13, pp. 1038–1049, 1993.
[45]
A. Farah, M. Monteiro, C. M. Donangelo, and S. Lafay, “Chlorogenic acids from green coffee extract are highly bioavailable in humans,” Journal of Nutrition, vol. 138, no. 12, pp. 2309–2315, 2008.
[46]
C. D. Gardner, L. M. Chatterjee, and A. A. Franke, “Effects of isoflavone supplements vs. soy foods on blood concentrations of genistein and daidzein in adults,” Journal of Nutritional Biochemistry, vol. 20, no. 3, pp. 227–234, 2009.
[47]
M. J. : Lee, P. Maliakal, L. Chen et al., “Pharmacokinetics of tea catechins after ingestion of green tea and (?)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability,” Cancer Epidemiology, Biomarkers & Prevention, vol. 11, no. 10, pp. 1025–1032, 2002.
[48]
E. J. Kim, H. K. Shin, and J. H. Y. Park, “Genistein inhibits insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells: a possible mechanism of the growth inhibitory effect of genistein,” Journal of Medicinal Food, vol. 8, no. 4, pp. 431–438, 2005.
[49]
W. Qi, C. R. Weber, K. Wasland, and S. D. Savkovic, “Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity,” BMC Cancer, vol. 11, p. 219, 2011.
[50]
M. Kern, D. Fridrich, J. Reichert et al., “Limited stability in cell culture medium and hydrogen peroxide formation affect the growth inhibitory properties of delphinidin and its degradation product gallic acid,” Molecular Nutrition and Food Research, vol. 51, no. 9, pp. 1163–1172, 2007.
[51]
P. Bellion, M. Olk, F. Will et al., “Formation of hydrogen peroxide in cell culture media by apple polyphenols and its effect on antioxidant biomarkers in the colon cell line HT29,” Molecular Nutrition & Food Research, vol. 53, no. 10, pp. 1226–1236, 2009.
[52]
L. H. Long, M. V. Clement, and B. Halliwell, “Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (?)-epigallocatechin, (?)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media,” Biochemical and Biophysical Research Communications, vol. 273, no. 1, pp. 50–53, 2000.
[53]
K. S. Suh, S. Chon, S. Oh et al., “Prooxidative effects of green tea polyphenol (?)-epigallocatethin-3-gallate on the HIT-T15 pancreatic beta cell line,” Cell Biology and Toxicology, vol. 26, no. 3, pp. 189–199, 2010.
[54]
L. H. Long, D. Kirkland, J. Whitwell, and B. Halliwell, “Different cytotoxic and clastogenic effects of epigallocatechin gallate in various cell-culture media due to variable rates of its oxidation in the culture medium,” Mutation Research, vol. 634, no. 1-2, pp. 177–183, 2007.
[55]
M. López-Lázaro, J. M. Calderón-Monta?o, E. Burgos-Morón, and C. A. Austin, “Green tea constituents (?)-epigallocatechin-3-gallate (EGCG) and gallic acid induce topoisomerase I- and topoisomerase II-DNA complexes in cells mediated by pyrogallol-induced hydrogen peroxide,” Mutagenesis, vol. 26, no. 4, pp. 489–498, 2011.
[56]
I. A. Groh, A. T. Cartus, S. Vallicotti, et al., “Genotoxic potential of methyleugenol and selected methyleugenol metabolites in cultured Chinese hamster V79 cells,” Food and Function, vol. 3, no. 4, pp. 428–436, 2012.
[57]
A. T. Cartus, K. Hermann, L. W. Weishaupt, W. Engst, H. Glatt, and D. Schrenk, “Metabolism of methyleugenol in liver microsomes and primary hepatocytes: pattern of metabolites, cytotoxicity, and DNA-adduct formation,” Journal of Toxicological Sciences, vol. 129, no. 1, pp. 21–34, 2012.
[58]
J. L. Burkey, J. M. Sauer, C. A. McQueen, and I. Glenn Sipes, “Cytotoxicity and genotoxicity of methyleugenol and related congeners-a mechanism of activation for methyleugenol,” Mutation Research, vol. 453, no. 1, pp. 25–33, 2000.
[59]
G. Eot-Houllier, G. Fulcrand, L. Magnaghi-Jaulin, and C. Jaulin, “Histone deacetylase inhibitors and genomic instability,” Cancer Letters, vol. 274, no. 2, pp. 169–176, 2009.
[60]
P. Rajendran, B. Delage, W. M. Dashwood et al., “Histone deacetylase turnover and recovery in sulforaphane-treated colon cancer cells: competing actions of 14-3-3 and Pin1 in HDAC3/SMRT corepressor complex dissociation/reassembly,” Molecular Cancer, vol. 10, p. 68, 2011.