全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Fructose: A Key Factor in the Development of Metabolic Syndrome and Hypertension

DOI: 10.1155/2013/682673

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diabetes mellitus and the metabolic syndrome are becoming leading causes of death in the world. Identifying the etiology of diabetes is key to prevention. Despite the similarity in their structures, fructose and glucose are metabolized in different ways. Uric acid, a byproduct of uncontrolled fructose metabolism is known risk factor for hypertension. In the liver, fructose bypasses the two highly regulated steps in glycolysis, glucokinase and phosphofructokinase, both of which are inhibited by increasing concentrations of their byproducts. Fructose is metabolized by fructokinase (KHK). KHK has no negative feedback system, and ATP is used for phosphorylation. This results in intracellular phosphate depletion and the rapid generation of uric acid due to activation of AMP deaminase. Uric acid, a byproduct of this reaction, has been linked to endothelial dysfunction, insulin resistance, and hypertension. We present possible mechanisms by which fructose causes insulin resistance and suggest actions based on this association that have therapeutic implications. 1. Background Type 2 diabetes mellitus is characterized by hyperglycemia, insulin resistance, and an impairment in insulin secretion. In the late nineteenth century, William Osler described diabetes as a rare disorder more likely to develop in obese people and patients with gout. He estimated its prevalence as approximately two to nine cases per 100,000 population in the USA and Europe being more common in the latter [1]. Diabetes, one of the leading causes of death in the United States, affects over 200 million people worldwide. The estimated prevalence of diabetes among adults in the United States ranges from 4.4 to 17.9 percent [2]. The community-based Framingham Heart Study, in a predominantly non-Hispanic white population, found a doubling in the incidence of type 2 diabetes over the last 30 years [3]. Identifying the etiology of type 2 diabetes is a key to its prevention. Obesity and intra-abdominal fat accumulation induce insulin resistance [4]. Studies have documented high rates of type 2 diabetes in the absence of classic obesity [5]. This suggests that other risk factors besides obesity might play a role in the epidemic of type 2 diabetes. 2. Fructose: Sources and Metabolism Fructose is a simple sugar present in fruits and honey and is responsible for their sweet taste. However, the major source of fructose worldwide is sucrose or table sugar, which is derived from sugar cane and sugar beets. It is man-made, first developed in New Guinea and in the Indian subcontinent and was a rare and

References

[1]  W. Osler, The Principles and Practice of Medicine, 2nd edition, 1895.
[2]  S. Cory, A. Ussery-Hall, S. Griffin-Blake et al., “Prevalence of selected risk behaviors and chronic diseases and conditions-steps communities, United States, 2006-2007,” Morbidity and Mortality Weekly Report, vol. 59, no. 8, pp. 1–37, 2010.
[3]  C. S. Fox, M. J. Pencina, J. B. Meigs, R. S. Vasan, Y. S. Levitzky, and R. B. D'Agostino, “Trends in the incidence of type 2 diabetes mellitus from the 1970s to the 1990s: The Framingham Heart Study,” Circulation, vol. 113, no. 25, pp. 2914–2918, 2006.
[4]  B. B. Kahn and J. S. Flier, “Obesity and insulin resistance,” The Journal of Clinical Investigation, vol. 106, no. 4, pp. 473–481, 2000.
[5]  W. H. Pan, K. M. Flegal, H. Y. Chang, W. T. Yeh, C. J. Yeh, and W. C. Lee, “Body mass index and obesity-related metabolic disorders in Taiwanese and US whites and blacks: implications for definitions of overweight and obesity for Asians,” The American Journal of Clinical Nutrition, vol. 79, no. 1, pp. 31–39, 2004.
[6]  R. J. Johnson, S. E. Perez-Pozo, Y. Y. Sautin et al., “Hypothesis: could excessive fructose intake and uric acid cause type 2 diabetes?” Endocrine Reviews, vol. 30, no. 1, pp. 96–116, 2009.
[7]  R. J. Johnson, M. S. Segal, Y. Sautin et al., “Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease1-3,” The American Journal of Clinical Nutrition, vol. 86, no. 4, pp. 899–906, 2007.
[8]  F. Q. Zhao and A. F. Keating, “Functional properties and genomics of glucose transporters,” Current Genomics, vol. 8, no. 2, pp. 113–128, 2007.
[9]  I. H. Fox and W. N. Kelley, “Studies on the mechanism of fructose-induced hyperuricemia in man,” Metabolism, vol. 21, no. 8, pp. 713–721, 1972.
[10]  P. H. M?enp??, K. O. Raivio, and M. P. Kekom?ki, “Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis,” Science, vol. 161, no. 3847, pp. 1253–1254, 1968.
[11]  B. Gustafson, “Adipose tissue, inflammation and atherosclerosis,” Journal of Atherosclerosis and Thrombosis, vol. 17, no. 4, pp. 332–341, 2010.
[12]  R. Murray, D. Bender, K. M. Botham, P. J. Kennelly, V. Rodwell, and P. A. Weil, Harper's Illustrated Biochemistry, New York, NY, USA, 2003.
[13]  O. P. McGuinness and A. D. Cherrington, “Effects of fructose on hepatic glucose metabolism,” Current Opinion in Clinical Nutrition and Metabolic Care, vol. 6, no. 4, pp. 441–448, 2003.
[14]  M. A. Lanaspa, L. G. Sanchez-Lozada, C. Cicerchi, et al., “Uric acid stimulates fructokinase and accelerates fructose metabolism in the development of fatty liver,” PLoS One, vol. 7, no. 10, Article ID e47948, 2012.
[15]  U. M. Khosla, S. Zharikov, J. L. Finch et al., “Hyperuricemia induces endothelial dysfunction,” Kidney International, vol. 67, no. 5, pp. 1739–1742, 2005.
[16]  Y. Y. Sautin, T. Nakagawa, S. Zharikov, and R. J. Johnson, “Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress,” American Journal of Physiology, vol. 293, no. 2, pp. C584–C596, 2007.
[17]  E. Fiaschi, B. Baggio, S. Favaro, et al., “Fructose-induced hyperuricemia in essential hypertension,” Metabolism, vol. 26, no. 11, pp. 1219–1223, 1977.
[18]  J. Perheentupa and K. Raivio, “Fructose-induced hyperuricaemia,” The Lancet, vol. 2, no. 7515, pp. 528–531, 1967.
[19]  F. Stirpe, E. Della Corte, E. Bonetti, A. Abbondanza, A. Abbati, and F. De Stefano, “Fructose-induced hyperuricaemia.,” The Lancet, vol. 2, no. 7686, pp. 1310–1311, 1970.
[20]  K. L. Stanhope and P. J. Havel, “Fructose consumption: potential mechanisms for its effects to increase visceral adiposity and induce dyslipidemia and insulin resistance,” Current Opinion in Lipidology, vol. 19, no. 1, pp. 16–24, 2008.
[21]  F. M. Raushel and W. W. Cleland, “The substrate and anomeric specificity of fructokinase,” The Journal of Biological Chemistry, vol. 248, no. 23, pp. 8174–8177, 1973.
[22]  C. P. Diggle, M. Shires, D. Leitch et al., “Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme,” Journal of Histochemistry and Cytochemistry, vol. 57, no. 8, pp. 763–774, 2009.
[23]  A. Asipu, B. E. Hayward, J. O'Reilly, and D. T. Bonthron, “Properties of normal and mutant recombinant human ketohexokinases and implications for the pathogenesis of essential fructosuria,” Diabetes, vol. 52, no. 9, pp. 2426–2432, 2003.
[24]  T. Ishimoto, M. A. Lanaspa, M. T. Le, et al., “Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 11, pp. 4320–4325, 2012.
[25]  C. P. Diggle, M. Shires, C. McRae et al., “Both isoforms of ketohexokinase are dispensable for normal growth and development,” Physiological Genomics, vol. 42, no. 4, pp. 235–243, 2010.
[26]  K. A. Lê, D. Faeh, R. Stettler et al., “A 4-wk high-fructose diet alters lipid metabolism without affecting insulin sensitivity or ectopic lipids in healthy humans,” The American Journal of Clinical Nutrition, vol. 84, no. 6, pp. 1374–1379, 2006.
[27]  E. Mayatepek, B. Hoffmann, and T. Meissner, “Inborn errors of carbohydrate metabolism,” Best Practice and Research, vol. 24, no. 5, pp. 607–618, 2010.
[28]  E. R. Froesch, “Disorders of fructose metabolism,” Clinics in Endocrinology and Metabolism, vol. 5, no. 3, pp. 599–611, 1976.
[29]  D. T. Bonthron, N. Brady, I. A. Donaldson, and B. Steinmann, “Molecular basis of essential fructosuria: molecular cloning and mutational analysis of human ketohexokinase (fructokinase),” Human Molecular Genetics, vol. 3, no. 9, pp. 1627–1631, 1994.
[30]  B. P. Marriott, N. Cole, and E. Lee, “National estimates of dietary fructose intake increased from 1977 to 2004 in the United States,” Journal of Nutrition, vol. 139, no. 6, pp. 1228S–1235S, 2009.
[31]  Y. K. Park and E. A. Yetley, “Intakes and food sources of fructose in the United States,” The American Journal of Clinical Nutrition, vol. 58, no. 5, supplement, pp. 737S–747S, 1993.
[32]  G. A. Bray, S. J. Nielsen, and B. M. Popkin, “Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity,” The American Journal of Clinical Nutrition, vol. 79, no. 4, pp. 537–543, 2004.
[33]  G. A. Bray, “The epidemic of obesity and changes in food intake: the fluoride hypothesis,” Physiology and Behavior, vol. 82, no. 1, pp. 115–121, 2004.
[34]  F. B. Hu and V. S. Malik, “Sugar-sweetened beverages and risk of obesity and type 2 diabetes: epidemiologic evidence,” Physiology and Behavior, vol. 100, no. 1, pp. 47–54, 2010.
[35]  V. S. Malik, M. B. Schulze, and F. B. Hu, “Intake of sugar-sweetened beverages and weight gain: a systematic review,” The American Journal of Clinical Nutrition, vol. 84, no. 2, pp. 274–288, 2006.
[36]  R. E. Morgan, “Does consumption of high-fructose corn syrup beverages cause obesity in children?” Pediatric Obesity, 2013.
[37]  K. L. Stanhope and P. J. Havel, “Fructose consumption: recent results and their potential implications,” Annals of the New York Academy of Sciences, vol. 1190, pp. 15–24, 2010.
[38]  L. C. Dolan, S. M. Potter, and G. A. Burdock, “Evidence-based review on the effect of normal dietary consumption of fructose on development of hyperlipidemia and obesity in healthy, normal weight individuals,” Critical Reviews in Food Science and Nutrition, vol. 50, no. 1, pp. 53–84, 2010.
[39]  R. A. Forshee, P. A. Anderson, and M. L. Storey, “Sugar-sweetened beverages and body mass index in children and adolescents: a meta-analysis,” The American Journal of Clinical Nutrition, vol. 87, no. 6, pp. 1662–1671, 2008.
[40]  V. Ha, J. L. Sievenpiper, R. J. de Souza, et al., “Effect of fructose on blood pressure: a systematic review and meta-analysis of controlled feeding trials,” Hypertension, vol. 59, no. 4, pp. 787–795, 2012.
[41]  R. D. Mattes, J. M. Shikany, K. A. Kaiser, and D. B. Allison, “Nutritively sweetened beverage consumption and body weight: a systematic review and meta-analysis of randomized experiments,” Obesity Reviews, vol. 12, no. 5, pp. 346–365, 2011.
[42]  J. L. Sievenpiper, R. J. de Souza, A. Mirrahimi, et al., “Effect of fructose on body weight in controlled feeding trials: a systematic review and meta-analysis,” Annals of Internal Medicine, vol. 156, no. 4, pp. 291–304, 2012.
[43]  M. Chen, A. Pan, V. S. Malik, and F. B. Hu, “Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials,” The American Journal of Clinical Nutrition, vol. 96, no. 4, pp. 735–747, 2012.
[44]  T. A. Ledoux, K. Watson, A. Barnett, N. T. Nguyen, J. C. Baranowski, and T. Baranowski, “Components of the diet associated with child adiposity: a cross-sectional study,” Journal of the American College of Nutrition, vol. 30, no. 6, pp. 536–546, 2011.
[45]  M. B. Schulze, J. E. Manson, D. S. Ludwig et al., “Sugar-sweetened beverages, weight gain, and incidence of type 2 diabetes in young and middle-aged women,” Journal of the American Medical Association, vol. 292, no. 8, pp. 927–934, 2004.
[46]  S. Z. Sun, G. H. Anderson, B. D. Flickinger, P. S. Williamson-Hughes, and M. W. Empie, “Fructose and non-fructose sugar intakes in the US population and their associations with indicators of metabolic syndrome,” Food and Chemical Toxicology, vol. 49, no. 11, pp. 2875–2882, 2011.
[47]  R. H. Unger, “Minireview: weapons of lean body mass destruction: the role of ectopic lipids in the metabolic syndrome,” Endocrinology, vol. 144, no. 12, pp. 5159–5165, 2003.
[48]  V. A. Zammit, I. J. Waterman, D. Topping, and G. McKay, “Insulin stimulation of hepatic triacylglycerol secretion and the etiology of insulin resistance,” Journal of Nutrition, vol. 131, no. 8, pp. 2074–2077, 2001.
[49]  S. E. Perez-Pozo, J. Schold, T. Nakagawa, L. G. Sánchez-Lozada, R. J. Johnson, and J. L. Lillo, “Excessive fructose intake induces the features of metabolic syndrome in healthy adult men: role of uric acid in the hypertensive response,” International Journal of Obesity, vol. 34, no. 3, pp. 454–461, 2010.
[50]  D. I. Jalal, G. Smits, R. J. Johnson, and M. Chonchol, “Increased fructose associates with elevated blood pressure,” Journal of the American Society of Nephrology, vol. 21, no. 9, pp. 1543–1549, 2010.
[51]  S. Nguyen, H. K. Choi, R. H. Lustig, and C. Y. Hsu, “Sugar-sweetened beverages, serum uric acid, and blood pressure in adolescents,” Journal of Pediatrics, vol. 154, no. 6, pp. 807–813, 2009.
[52]  Y. H. Kim, G. P. Abris, M. K. Sung, and J. E. Lee, “Consumption of sugar-sweetened beverages and blood pressure in the United States: the national health and nutrition examination survey 2003–2006,” Clinical Nutrition Research, vol. 1, no. 1, pp. 85–93, 2012.
[53]  D. I. Feig, M. Mazzali, D. H. Kang et al., “Serum uric acid: a risk factor and a target for treatment?” Journal of the American Society of Nephrology, vol. 17, no. 4, supplement 2, pp. S69–S73, 2006.
[54]  D. I. Feig, D. H. Kang, and R. J. Johnson, “Medical progress: uric acid and cardiovascular risk,” The New England Journal of Medicine, vol. 359, no. 17, pp. 1811–1821, 2008.
[55]  M. A. Pereira and V. L. Fulgoni III, “Consumption of 100% fruit juice and risk of obesity and metabolic syndrome: findings from the national health and nutrition examination survey 1999–2004,” Journal of the American College of Nutrition, vol. 29, no. 6, pp. 625–629, 2010.
[56]  C. M. Champagne, S. T. Broyles, L. D. Moran, et al., “Dietary intakes associated with successful weight loss and maintenance during the Weight Loss Maintenance trial,” Journal of the American Dietetic Association, vol. 111, no. 12, pp. 1826–1835, 2011.
[57]  J. L. Rosado, O. P. Garcia, D. Ronquillo et al., “Intake of milk with added micronutrients increases the effectiveness of an energy-restricted diet to reduce body weight: a randomized controlled clinical trial in Mexican women,” Journal of the American Dietetic Association, vol. 111, no. 10, pp. 1507–1516, 2011.
[58]  S. C. Disse, A. Buelow, R. H. Boedeker et al., “Reduced prevalence of obesity in children with primary fructose malabsorption: a multicentre, retrospective cohort study,” Pediatric Obesity, 2013.
[59]  R. W. Walker, K. A. Le, J. Davis et al., “High rates of fructose malabsorption are associated with reduced liver fat in obese African Americans,” Journal of the American College of Nutrition, vol. 31, no. 5, pp. 369–374, 2012.
[60]  M. E. F. Vázquez-Vela, N. Torres, and A. R. Tovar, “White adipose tissue as endocrine organ and its role in obesity,” Archives of Medical Research, vol. 39, no. 8, pp. 715–728, 2008.
[61]  M. I. Lefterova and M. A. Lazar, “New developments in adipogenesis,” Trends in Endocrinology and Metabolism, vol. 20, no. 3, pp. 107–114, 2009.
[62]  F. M. Gregoire, C. M. Smas, and H. S. Sul, “Understanding adipocyte differentiation,” Physiological Reviews, vol. 78, no. 3, pp. 783–809, 1998.
[63]  E. D. Rosen, C. J. Walkey, P. Puigserver, and B. M. Spiegelman, “Transcriptional regulation of adipogenesis,” Genes and Development, vol. 14, no. 11, pp. 1293–1307, 2000.
[64]  R. M. Evans, G. D. Barish, and Y. X. Wang, “PPARs and the complex journey to obesity,” Nature Medicine, vol. 10, no. 4, pp. 355–361, 2004.
[65]  J. Y. Kim, E. van de Wall, M. Laplante et al., “Obesity-associated improvements in metabolic profile through expansion of adipose tissue,” The Journal of Clinical Investigation, vol. 117, no. 9, pp. 2621–2637, 2007.
[66]  C. N. Martini, M. V. Plaza, and M. D. C. Vila, “PKA-dependent and independent cAMP signaling in 3T3-L1 fibroblasts differentiation,” Molecular and Cellular Endocrinology, vol. 298, no. 1-2, pp. 42–47, 2009.
[67]  G. X. Shen, “Oxidative stress and diabetic cardiovascular disorders: roles of mitochondria and NADPH oxidase,” Canadian Journal of Physiology and Pharmacology, vol. 88, no. 3, pp. 241–248, 2010.
[68]  A. De Pauw, S. Tejerina, M. Raes, J. Keijer, and T. Arnould, “Mitochondrial (dys)function in adipocyte (de)differentiation and systemic metabolic alterations,” American Journal of Pathology, vol. 175, no. 3, pp. 927–939, 2009.
[69]  M. E. Patti and S. Corvera, “The role of mitochondria in the pathogenesis of type 2 diabetes,” Endocrine Reviews, vol. 31, no. 3, pp. 364–395, 2010.
[70]  A. H. Berg, T. P. Combs, X. Du, M. Brownlee, and P. E. Scherer, “The adipocyte-secreted protein Acrp30 enhances hepatic insulin action,” Nature Medicine, vol. 7, no. 8, pp. 947–953, 2001.
[71]  T. Yamauchi, J. Kamon, Y. Minokoshi, et al., “Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase,” Nature Medicine, vol. 8, no. 11, pp. 1288–1295, 2002.
[72]  V. L. Burt, P. Whelton, E. J. Roccella et al., “Prevalence of hypertension in the US adult population: results from the third National Health and Nutrition Examination Survey, 1988-1991,” Hypertension, vol. 25, no. 3, pp. 305–313, 1995.
[73]  L. E. Fields, V. L. Burt, J. A. Cutler, J. Hughes, E. J. Roccella, and P. Sorlie, “The burden of adult hypertension in the United States 1999 to 2000: a rising tide,” Hypertension, vol. 44, no. 4, pp. 398–404, 2004.
[74]  J. Taylor, “The hypertension detection and follow-up program: a progress report,” Circulation Research, vol. 40, no. 5, supplement 1, pp. I106–I109, 1977.
[75]  A. B. Alper Jr., W. Chen, L. Yau, S. R. Srinivasan, G. S. Berenson, and L. L. Hamm, “Childhood uric acid predicts adult blood pressure: The Bogalusa Heart Study,” Hypertension, vol. 45, no. 1, pp. 34–38, 2005.
[76]  K. Masuo, H. Kawaguchi, H. Mikami, T. Ogihara, and M. L. Tuck, “Serum uric acid and plasma norepinephrine concentrations predict subsequent weight gain and blood pressure elevation,” Hypertension, vol. 42, no. 4, pp. 474–480, 2003.
[77]  P. B. Mellen, A. J. Bleyer, T. P. Erlinger et al., “Serum uric acid predicts incident hypertension in a biethnic cohort: The Atherosclerosis Risk in Communities Study,” Hypertension, vol. 48, no. 6, pp. 1037–1042, 2006.
[78]  K. Nagahama, T. Inoue, K. Iseki et al., “Hyperuricemia as a predictor of hypertension in a screened cohort in Okinawa, Japan,” Hypertension Research, vol. 27, no. 11, pp. 835–841, 2004.
[79]  J. Sundstr?m, L. Sullivan, R. B. D'Agostino, D. Levy, W. B. Kannel, and R. S. Vasan, “Relations of serum uric acid to longitudinal blood pressure tracking and hypertension incidence,” Hypertension, vol. 45, no. 1, pp. 28–33, 2005.
[80]  M. Mazzali, J. Hughes, Y. G. Kim et al., “Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism,” Hypertension, vol. 38, no. 5, pp. 1101–1106, 2001.
[81]  D. I. Feig, B. Soletsky, and R. J. Johnson, “Effect of allopurinol on blood pressure of adolescents with newly diagnosed essential hypertension: a randomized trial,” Journal of the American Medical Association, vol. 300, no. 8, pp. 924–932, 2008.
[82]  B. Soletsky and D. I. Feig, “Uric acid reduction rectifies prehypertension in obese adolescents,” Hypertension, vol. 60, no. 5, pp. 1148–1156, 2012.
[83]  V. Farah, K. M. Elased, Y. Chen et al., “Nocturnal hypertension in mice consuming a high fructose diet,” Autonomic Neuroscience, vol. 130, no. 1-2, pp. 41–50, 2006.
[84]  A. K. De, D. D. Senador, C. Mostarda, M. C. Irigoyen, and M. Morris, “Sympathetic overactivity precedes metabolic dysfunction in a fructose model of glucose intolerance in mice,” American Journal of Physiology, vol. 302, no. 8, pp. R950–R957, 2012.
[85]  I. Hwang, H. Ho, B. B. Hoffman, and G. M. Reaven, “Fructose-induced insulin resistance and hypertension in rats,” Hypertension, vol. 10, no. 5, pp. 512–516, 1987.
[86]  B. M. Wolfe and S. P. Ahuja, “Effects of intravenously administered fructose and glucose on splanchnic secretion of plasma triglycerides in hypertriglyceridemic men,” Metabolism, vol. 26, no. 9, pp. 963–978, 1977.
[87]  Y. Sato, T. Ito, N. Udaka et al., “Immunohistochemical localization of facilitated-diffusion glucose transporters in rat pancreatic islets,” Tissue and Cell, vol. 28, no. 6, pp. 637–643, 1996.
[88]  K. L. Teff, S. S. Elliott, M. Tsch?p et al., “Dietary fructose reduces circulating insulin and leptin, attenuates postprandial suppression of ghrelin, and increases triglycerides in women,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 6, pp. 2963–2972, 2004.
[89]  M. M. Swarbrick, K. L. Stanhope, S. S. Elliott et al., “Consumption of fructose-sweetened beverages for 10 weeks increases postprandial triacylglycerol and apolipoprotein-B concentrations in overweight and obese women,” British Journal of Nutrition, vol. 100, no. 5, pp. 947–952, 2008.
[90]  A. Rebollo, N. Roglans, M. Alegret, and J. C. Laguna, “Way back for fructose and liver metabolism: bench side to molecular insights,” World Journal of Gastroenterology, vol. 18, no. 45, pp. 6552–6559, 2012.
[91]  M. I. Goran, S. J. Ulijaszek, and E. E. Ventura, “High fructose corn syrup and diabetes prevalence: a global perspective,” Global Public Health, vol. 8, no. 1, pp. 55–64, 2013.
[92]  Y. Mukai, M. Kumazawa, and S. Sato, “Fructose intake during pregnancy up-regulates the expression of maternal and fetal hepatic sterol regulatory element-binding protein-1c in rats,” Endocrine, 2012.
[93]  M. M. Perala, S. Mannisto, N. E. Kaartinen et al., “Body size at birth is associated with food and nutrient intake in adulthood,” PLoS One, vol. 7, no. 9, Article ID e46139, 2012.
[94]  G. Koricanac, S. Tepavcevic, S. Romic, et al., “Estradiol enhances effects of fructose rich diet on cardiac fatty acid transporter CD36 and triglycerides accumulation,” European Journal of Pharmacology, vol. 694, no. 1–3, pp. 127–134, 2012.
[95]  M. Zou, E. J. Arentson, D. Teegarden, S. L. Koser, L. Onyskow, and S. S. Donkin, “Fructose consumption during pregnancy and lactation induces fatty liver and glucose intolerance in rats,” Nutrition Research, vol. 32, no. 8, pp. 588–598, 2012.
[96]  H. Li, R. Xu, X. Peng, Y. Wang, and T. Wang, “Association of glucokinase regulatory protein polymorphism with type 2 diabetes and fasting plasma glucose: a meta-analysis,” Molecular Biology Reports, vol. 40, no. 6, pp. 3935–3942, 2013.
[97]  A. Masotti, “Comment on: Visinoni et al. The role of liver fructose-1,6-bisphosphatase in regulating appetite and adiposity, Diabetes, vol. 61, pp. 1122–1132, 2012,” Diabetes, vol. 61, no. 12, article e20, 2012.
[98]  Y. Marcus, G. Shefer, and K. Sasson, “Angiotensin 1-7 as means to prevent the metabolic syndrome: lessons from the fructose-fed rat model,” Diabetes, vol. 62, no. 4, pp. 1121–1130, 2013.
[99]  M. J. Merrins, R. Bertram, A. Sherman, and L. S. Satin, “Phosphofructo-2-kinase/fructose-2,6-bisphosphatase modulates oscillations of pancreatic islet metabolism,” PLoS One, vol. 7, no. 4, Article ID e34036, 2012.
[100]  A. L. Wilson-O'Brien, N. Patron, and S. Rogers, “Evolutionary ancestry and novel functions of the mammalian glucose transporter (GLUT) family,” BMC Evolutionary Biology, vol. 10, no. 1, article 152, 2010.
[101]  B. Buemann, S. Toubro, J. J. Holst, J. F. Rehfeld, B. M. Bibby, and A. Astrup, “D-Tagatose, a stereoisomer of D-fructose, increases blood uric acid concentration,” Metabolism, vol. 49, no. 8, pp. 969–976, 2000.
[102]  M. F. Schaalan, “Effects of pioglitazone and/or simvastatin on circulating TNFalpha and adiponectin levels in insulin resistance,” Journal of Immunotoxicology, vol. 9, no. 2, pp. 201–209, 2012.
[103]  A. M. Puyo, J. S. Borroni, S. Boudou et al., “Metformin reduces vascular production of vasoconstrictor prostanoids in fructose overloaded rats,” Autonomic and Autacoid Pharmacology, vol. 32, no. 1, part 2, pp. 9–14, 2012.
[104]  C. L. Chou, C. Y. Pang, T. J. Lee, and T. C. Fang, “Direct renin inhibitor prevents and ameliorates insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose-fed hypertensive rats,” Hypertension Research, vol. 36, no. 2, pp. 123–128, 2013.
[105]  P. Li, T. Koike, H. Y. Jiang, Z. H. Wang, Y. Kawata, and Y. Oshida, “Acute treatment with candesartan cilexetil, an angiotensin II type 1 receptor blocker, improves insulin sensitivity in high-fructose-diet-fed rats,” Hormone and Metabolic Research, vol. 44, no. 4, pp. 286–290, 2012.
[106]  M. H. Abdulla, M. A. Sattar, N. A. Abdullah, and E. J. Johns, “The effect of losartan and carvedilol on renal haemodynamics and altered metabolism in fructose-fed Sprague-Dawley rats,” Journal of Physiology and Biochemistry, vol. 68, no. 3, pp. 353–363, 2012.
[107]  Q. Guo, T. Mori, Y. Jiang et al., “Losartan modulates muscular capillary density and reverses thiazide diuretic-exacerbated insulin resistance in fructose-fed rats,” Hypertension Research, vol. 35, no. 1, pp. 48–54, 2012.
[108]  D. Yoshida, K. Higashiura, Y. Shinshi et al., “Effects of angiotensin II receptor blockade on glucose metabolism via AMP-activated protein kinase in insulin-resistant hypertensive rats,” Journal of the American Society of Hypertension, vol. 3, no. 1, pp. 3–8, 2009.
[109]  J. Ran, T. Hirano, T. Fukui et al., “Angiotensin II infusion decreases plasma adiponectin level via its type 1 receptor in rats: an implication for hypertension-related insulin resistance,” Metabolism, vol. 55, no. 4, pp. 478–488, 2006.
[110]  F. Jing, M. Mogi, and M. Horiuchi, “Role of renin-angiotensin-aldosterone system in adipose tissue dysfunction,” Molecular and Cellular Endocrinology, 2012.
[111]  N. S. Kalupahana, F. Massiera, A. Quignard-Boulange et al., “Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance,” Obesity, vol. 20, no. 1, pp. 48–56, 2012.
[112]  L. Yvan-Charvet and A. Quignard-Boulangé, “Role of adipose tissue renin-angiotensin system in metabolic and inflammatory diseases associated with obesity,” Kidney International, vol. 79, no. 2, pp. 162–168, 2011.
[113]  H. S. Weisinger, D. P. Begg, G. F. Egan et al., “Angiotensin converting enzyme inhibition from birth reduces body weight and body fat in Sprague-Dawley rats,” Physiology and Behavior, vol. 93, no. 4-5, pp. 820–825, 2008.
[114]  A. Kurata, H. Nishizawa, S. Kihara et al., “Blockade of angiotensin II type-1 receptor reduces oxidative stress in adipose tissue and ameliorates adipocytokine dysregulation,” Kidney International, vol. 70, no. 10, pp. 1717–1724, 2006.
[115]  L. Yvan-Charvet, P. Even, M. Bloch-Faure et al., “Deletion of the angiotensin type 2 receptor (AT2R) reduces adipose cell size and protects from diet-induced obesity and insulin resistance,” Diabetes, vol. 54, no. 4, pp. 991–999, 2005.
[116]  A. Saiki, M. Ohira, K. Endo et al., “Circulating angiotensin II is associated with body fat accumulation and insulin resistance in obese subjects with type 2 diabetes mellitus,” Metabolism, vol. 58, no. 5, pp. 708–713, 2009.
[117]  K. Matsushita, Y. Wu, Y. Okamoto, R. E. Pratt, and V. J. Dzau, “Local renin angiotensin expression regulates human mesenchymal stem cell differentiation to adipocytes,” Hypertension, vol. 48, no. 6, pp. 1095–1102, 2006.
[118]  M. Sydow, H. Burchardi, J. Zinserling, H. Ische, T. A. Crozier, and W. Weyland, “Improved determination of static compliance by automated single volume steps in ventilated patients,” Intensive Care Medicine, vol. 17, no. 2, pp. 108–114, 1991.
[119]  B. N. Ames, R. Cathcart, E. Schwiers, and P. Hochstein, “Uric acid provides an antioxidant defense in humans against oxidant- and radical-caused aging and cancer: a hypothesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 78, no. 11, pp. 6858–6862, 1981.
[120]  C. M. Brown, A. G. Dulloo, and J. P. Montani, “Sugary drinks in the pathogenesis of obesity and cardiovascular diseases,” International Journal of Obesity, vol. 32, supplement 6, pp. S28–S34, 2008.
[121]  J. R. Palmer, D. A. Boggs, S. Krishnan, F. B. Hu, M. Singer, and L. Rosenberg, “Sugar-sweetened beverages and incidence of type 2 diabetes mellitus in African American women,” Archives of Internal Medicine, vol. 168, no. 14, pp. 1487–1492, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133