全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Simultaneous Detection of Different MicroRNA Types Using the ZIP-Code Array System

DOI: 10.1155/2013/496425

Full-Text   Cite this paper   Add to My Lib

Abstract:

MicroRNAs (miRNAs) are important negative regulators of gene expression. Their implication in tumorigenesis is based on their dysregulation in many human cancer diseases. Interestingly, in tumor cells, an altered ratio of precursor and mature miRNA levels has been described. Consequently, differences in miRNA type levels have a high potential as biomarkers and comparative high-throughput-based detection might permit a more accurate characterization of subtypes, especially in the case of very heterogeneous tumor entities. Several molecular methods exist for the detection of mature and precursor miRNAs. DNA microarrays are predestinated as a high-throughput method for comprehensive miRNA detection in tumors. However, the simultaneous array-based detection of both these miRNA types is limited because the mature miRNA sequence is identically present in both forms. Here we present a ZIP-code DNA microarray-based system in combination with a novel labeling approach, which enables the simultaneous detection of precursor and mature miRNAs in one single experiment. Using synthetic miRNA templates, we demonstrate the specificity of the method for the different miRNA types, as well as the detection range up to four orders of magnitude. Moreover, mature and precursor miRNAs were detected and validated in human tumor cells. 1. Introduction MicroRNAs (miRNAs) are small noncoding RNAs that are known to have important regulatory functions in gene expression and influence various biological processes—like cell growth, differentiation, and apoptosis in eukaryotes (reviewed in [1, 2]). Because of their involvement in these basic cellular processes, miRNAs also play an important role in tumor development (reviewed in [3–5]). Genes encoding miRNAs are located on the chromosome as independent transcription units, separately from previously annotated genes, either within introns or even within exons [6]. Some miRNA genes are clustered and transcribed as multicistronic primary transcripts. miRNAs in these transcription units are often but not always related to each other. Further, not all miRNAs of the same cluster are active at the same time [7]. miRNA biogenesis starts from an up to several kilo bases long primary miRNA transcript (pri-miRNA) in the nucleus that contains a hairpin structure from which the mature miRNA is processed. Pri-miRNAs are with a few exceptions transcribed by RNA polymerase II [8, 9]. A complex including the RNase III endonuclease Drosha and the double-stranded RNA binding domain protein DGCR8 further processes them to short hairpin precursor miRNAs

References

[1]  D. P. Bartel, “MicroRNAs: genomics, biogenesis, mechanism, and function,” Cell, vol. 116, no. 2, pp. 281–297, 2004.
[2]  N. Bushati and S. M. Cohen, “MicroRNA functions,” Annual Review of Cell and Developmental Biology, vol. 23, pp. 175–205, 2007.
[3]  G. A. Calin and C. M. Croce, “MicroRNA signatures in human cancers,” Nature Reviews Cancer, vol. 6, no. 11, pp. 857–866, 2006.
[4]  A. Esquela-Kerscher and F. J. Slack, “Oncomirs—microRNAs with a role in cancer,” Nature Reviews Cancer, vol. 6, no. 4, pp. 259–269, 2006.
[5]  E. Barbarotto, T. D. Schmittgen, and G. A. Calin, “MicroRNAs and cancer: profile, profile, profile,” International Journal of Cancer, vol. 122, no. 5, pp. 969–977, 2008.
[6]  V. N. Kim and J. W. Nam, “Genomics of microRNA,” Trends in Genetics, vol. 22, no. 3, pp. 165–173, 2006.
[7]  J. Yu, F. Wang, G. H. Yang et al., “Human microRNA clusters: genomic organization and expression profile in leukemia cell lines,” Biochemical and Biophysical Research Communications, vol. 349, no. 1, pp. 59–68, 2006.
[8]  Y. Lee, M. Kim, J. Han et al., “MicroRNA genes are transcribed by RNA polymerase II,” EMBO Journal, vol. 23, no. 20, pp. 4051–4060, 2004.
[9]  G. M. Borchert, W. Lanier, and B. L. Davidson, “RNA polymerase III transcribes human microRNAs,” Nature Structural and Molecular Biology, vol. 13, no. 12, pp. 1097–1101, 2006.
[10]  Y. Lee, C. Ahn, J. Han et al., “The nuclear RNase III Drosha initiates microRNA processing,” Nature, vol. 425, no. 6956, pp. 415–419, 2003.
[11]  J. Han, Y. Lee, K. H. Yeom et al., “Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex,” Cell, vol. 125, no. 5, pp. 887–901, 2006.
[12]  E. Lund, S. Güttinger, A. Calado, J. E. Dahlberg, and U. Kutay, “Nuclear export of microRNA precursors,” Science, vol. 303, no. 5654, pp. 95–98, 2004.
[13]  E. Bernstein, A. A. Caudy, S. M. Hammond, and G. J. Hannon, “Role for a bidentate ribonuclease in the initiation step of RNA interference,” Nature, vol. 409, no. 6818, pp. 363–366, 2001.
[14]  Y. Kurihara and Y. Watanabe, “Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 34, pp. 12753–12758, 2004.
[15]  K. F?rstemann, Y. Tomari, T. Du et al., “Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein,” PLoS Biology, vol. 3, no. 7, article e236, 2005.
[16]  G. Meister and T. Tuschl, “Mechanisms of gene silencing by double-stranded RNA,” Nature, vol. 431, no. 7006, pp. 343–349, 2004.
[17]  W. Filipowicz, S. N. Bhattacharyya, and N. Sonenberg, “Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?” Nature Reviews Genetics, vol. 9, no. 2, pp. 102–114, 2008.
[18]  T. D. Schmittgen, “Regulation of microRNA processing in development, differentiation and cancer,” Journal of Cellular and Molecular Medicine, vol. 12, no. 5, pp. 1811–1819, 2008.
[19]  V. Ambros, R. C. Lee, A. Lavanway, P. T. Williams, and D. Jewell, “MicroRNAs and other tiny endogenous RNAs in C. elegans,” Current Biology, vol. 13, no. 10, pp. 807–818, 2003.
[20]  J. M. Thomson, M. Newman, J. S. Parker, E. M. Morin-Kensicki, T. Wright, and S. M. Hammond, “Extensive post-transcriptional regulation of microRNAs and its implications for cancer,” Genes and Development, vol. 20, no. 16, pp. 2202–2207, 2006.
[21]  F. G. Wulczyn, L. Smirnova, A. Rybak et al., “Post-transcriptional regulation of the let-7 microRNA during neural cell specification,” FASEB Journal, vol. 21, no. 2, pp. 415–426, 2007.
[22]  N. Yanaihara, N. Caplen, E. Bowman et al., “Unique microRNA molecular profiles in lung cancer diagnosis and prognosis,” Cancer Cell, vol. 9, no. 3, pp. 189–198, 2006.
[23]  A. J. O'Hara, W. Vahrson, and D. P. Dittmer, “Gene alteration and precursor and mature microRNA transcription changes contribute to the miRNA signature of primary effusion lymphoma,” Blood, vol. 111, no. 4, pp. 2347–2353, 2008.
[24]  E. S. Jaffe, “The 2008 WHO classification of lymphomas: implications for clinical practice and translational research,” Hematology/the Education Program of the American Society of Hematology, pp. 523–531, 2009.
[25]  M. Lagos-Quintana, R. Rauhut, W. Lendeckel, and T. Tuschl, “Identification of novel genes coding for small expressed RNAs,” Science, vol. 294, no. 5543, pp. 853–858, 2001.
[26]  A. Válóczi, C. Hornyik, N. Varga, J. Burgyán, S. Kauppinen, and Z. Havelda, “Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes,” Nucleic Acids Research, vol. 32, no. 22, article e175, 2004.
[27]  E. Várallyay, J. Burgyán, and Z. Havelda, “MicroRNA detection by northern blotting using locked nucleic acid probes,” Nature Protocols, vol. 3, no. 2, pp. 190–196, 2008.
[28]  T. A. Farazi, J. I. Spitzer, P. Morozov, and T. Tuschl, “MiRNAs in human cancer,” Journal of Pathology, vol. 223, no. 2, pp. 102–115, 2011.
[29]  C. Chen, D. A. Ridzon, A. J. Broomer et al., “Real-time quantification of microRNAs by stem-loop RT-PCR,” Nucleic Acids Research, vol. 33, no. 20, article e179, 2005.
[30]  T. D. Schmittgen, J. Jiang, Q. Liu, and L. Yang, “A high-throughput method to monitor the expression of microRNA precursors,” Nucleic Acids Research, vol. 32, no. 4, article e43, 2004.
[31]  W. Li and K. Ruan, “MicroRNA detection by microarray,” Analytical and Bioanalytical Chemistry, vol. 394, no. 4, pp. 1117–1124, 2009.
[32]  C. G. Liu, R. Spizzo, G. A. Calin, and C. M. Croce, “Expression profiling of microRNA using oligo DNA arrays,” Methods, vol. 44, no. 1, pp. 22–30, 2008.
[33]  K. A. Cissell and S. K. Deo, “Trends in microRNA detection,” Analytical and Bioanalytical Chemistry, vol. 394, no. 4, pp. 1109–1116, 2009.
[34]  M. de Planell-Saguer and M. C. Rodicio, “Analytical aspects of microRNA in diagnostics: a review,” Analytica Chimica Acta, vol. 699, no. 2, pp. 134–152, 2011.
[35]  N. C. Hauser, R. Martinez, A. Jacob, S. Rupp, J. D. Hoheisel, and S. Matysiak, “Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform,” Nucleic Acids Research, vol. 34, no. 18, pp. 5101–5111, 2006.
[36]  M. D. Mattie, C. C. Benz, J. Bowers et al., “Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies,” Molecular Cancer, vol. 5, article 24, 2006.
[37]  Qiagen, MiScript PCR System Handbook, 4th edition, 2011.
[38]  V. Plaisance, A. Abderrahmani, V. Perret-Menoud, P. Jacquemin, F. Lemaigre, and R. Regazzi, “MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells,” The Journal of Biological Chemistry, vol. 281, no. 37, pp. 26932–26942, 2006.
[39]  P. Landgraf, M. Rusu, R. Sheridan et al., “A mammalian microRNA expression atlas based on small RNA library sequencing,” Cell, vol. 129, no. 7, pp. 1401–1414, 2007.
[40]  A. Lagana, S. Forte, A. Giudice et al., “miRò: a miRNA knowledge base,” Database, vol. 2009, Article ID bap008, 2009.
[41]  K. Lemuth, K. Steuer, and C. Albermann, “Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin,” Microbial Cell Factories, vol. 10, article 29, 2011.
[42]  S. Griffiths-Jones, H. K. Saini, S. van Dongen, and A. J. Enright, “miRBase: tools for microRNA genomics,” Nucleic Acids Research, vol. 36, no. 1, pp. D154–D158, 2008.
[43]  J. Starega-Roslan, J. Krol, E. Koscianska et al., “Structural basis of microRNA length variety,” Nucleic Acids Research, vol. 39, no. 1, pp. 257–268, 2011.
[44]  A. Kozomara and S. Griffiths-Jones, “miRBase: integrating microRNA annotation and deep-sequencing data,” Nucleic Acids Research, vol. 39, no. 1, pp. D152–D157, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133