全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Markov Chain Model to Explain the Dynamics of Human Depression

DOI: 10.1155/2014/107164

Full-Text   Cite this paper   Add to My Lib

Abstract:

Depression is one of the major concerns of the present generation. A Markov chain model has been used to portray and investigate this curse. Long-term behaviour of the model has been discussed. Different types of treatment strategies have been considered in this paper to identify the most powerful measure of keeping this disease from its spread in the society. This paper also focuses on the usefulness of the drugs available at present for the treatment of this disease. 1. Introduction Depression is one of the major diseases which is affecting the present generation. The fast-paced life has posed its own curse on the society. The tensions that come as a supplement to the six-figure salary is unavoidable. This disease is associated with lowered work functioning, including absences, impaired productivity, and decreased job retention. Several manuscripts have been published on this issue to find all possible ways to eliminate this from the society. In one of the articles, [1] the author introduces a Markov chain model which provides a method to deal with various sequence of information. The most common form of depression, known as Major Depressive Disorder (MDD), is modeled and analyzed by the Markov chain model. The author successfully obtained a mean to find the future state of the depression based on the present situation. Some manuscripts deal with the numerical computations on moods and depression [2]. In other articles [3], the author has explained the psychological theories about a unipolar clinical depression through proper representation using a well-designed mathematical model. In this paper, the author took great interest in captivating the dynamics of mood in human or human-like agents. The articles listed above clearly portray the idea that there is a great concern of controlling depression in the present generation. Most of the models could successfully capture the salient features of a person’s state, but it is rather a hard task to explain the long-term behaviour of a person’s state. The daily commotions create disturbances in an individual’s life, which is sufficient in creating a disturbance in his normal state of mind. The effectiveness of these disturbances would determine the probability of drifting an individual towards a depressed state. In order to study the causes behind this depression, the scientists are also taking into concern the dopaminergic and serotonergic synapses in an individual [4, 5]. Experimental studies are also carried out to control this disease. In [6], the author developed a screening instrument for depression

References

[1]  S. K. Oskooyee, A. M. Rahmani, and M. R. M. Kashani, “Predicting the severity of major depression disorder with the Markov chain model,” in Proceedings of the International Conference on Bioscience, Biochemistery and Bioinformatics, vol. 5, Singapoure, 2011.
[2]  R. J. Davidson, D. A. Lewis, L. B. Alloy et al., “Neural and behavioral substrates of mood and mood regulation,” Biological Psychiatry, vol. 52, no. 6, pp. 478–502, 2002.
[3]  B. Fiemke, M. Hoogendoorn, C. A. Klein, and J. Treur, “Modeling the dynamics of mood and depression,” in Proceedings of the 18th European Conference on Artificial Intelligence (ECAI '08), pp. 266–270, 2008.
[4]  J. Best, M. Reed, and H. F. Nijhout, “Models of dopaminergic and serotonergic signaling,” Pharmacopsychiatry, vol. 43, supplement 1, pp. S61–S66, 2010.
[5]  J. Best, G. Oakley, M. Reed, and H. F. Nijhout, “Mathematical models: interactions between serotonin and dopamine in Parkinsons disease,” in Etiology and Pathophysiology of Parkinson's Disease, InTech, 2011.
[6]  A. B. Burrows, J. N. Morris, S. E. Simon, J. P. Hirdes, and C. Phillips, “Development of a minimum data set-based depression rating scale for use in nursing homes,” Age and Ageing, vol. 29, no. 2, pp. 165–172, 2000.
[7]  H. C. Tuckwell and R. M. Miura, “A mathematical model for spreading cortical depression,” Biophysical Journal, vol. 23, no. 2, pp. 257–275, 1978.
[8]  P. F. Lovibond and S. H. Lovibond, “The structure of negative emotional states: comparison of the Depression Anxiety Stress Scales (DASS) with the beck depression and anxiety inventories,” Behaviour Research and Therapy, vol. 33, no. 3, pp. 335–343, 1995.
[9]  T. A. Brown, B. F. Chorpita, W. Korotitsch, and D. H. Barlow, “Psychometric properties of the Depression Anxiety Stress Scales (DASS) in clinical samples,” Behaviour Research and Therapy, vol. 35, no. 1, pp. 79–89, 1997.
[10]  J. D. Henry and J. R. Crawford, “The short-form version of the Depression Anxiety Stress Scales (DASS-21): construct validity and normative data in a large non-clinical sample,” British Journal of Clinical Psychology, vol. 44, no. 2, pp. 227–239, 2005.
[11]  J. F. Cohn, T. S. Kruez, I. Matthews et al., “Detecting depression from facial actions and vocal prosody,” in Proceedings of the IEEE 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops (ACII '09), September 2009.
[12]  P. Ekman and E. Rosenberg, What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS), Oxford University Press, New York, NY, USA, 1997.
[13]  C. Pearce, K. Dwan, M. Arnold, C. Phillips, and S. Trumble, “Doctor, patient and computer—a framework for the new consultation,” International Journal of Medical Informatics, vol. 78, no. 1, pp. 32–38, 2009.
[14]  A. A. Aziz, M. C. A. Klein, and J. Treur, “Modeling an ambient agent to support depression relapse prevention,” in Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology—Workshops (WI-IAT '09), vol. 3, pp. 335–340, IEEE Computer Society, September 2009.
[15]  W. Jizheng, H. Bin, P. Moore, and R. Ashford, “Intelligent mobile computing to assist in the treatment of depression,” in Proceedings of the 3rd International Conference on Pervasive Computing and Applications (ICPCA '08), pp. 650–655, October 2008.
[16]  F. G. Lether, “Shifted rectangular quadrature rule approximations to Dawson's integral F(x),” Journal of Computational and Applied Mathematics, vol. 92, no. 2, pp. 97–102, 1998.
[17]  M. Bostani, “Almost periodic solutions for first-order differential equations,” Differential and Integral Equations, vol. 19, no. 1, pp. 91–120, 2006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133