全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Dynamic Sliding Mode Control Design Based on an Integral Manifold for Nonlinear Uncertain Systems

DOI: 10.1155/2014/489364

Full-Text   Cite this paper   Add to My Lib

Abstract:

An output feedback sliding mode control law design relying on an integral manifold is proposed in this work. The considered class of nonlinear systems is assumed to be affected by both matched and unmatched uncertainties. The use of the integral sliding manifold allows one to subdivide the control design procedure into two steps. First a linear control component is designed by pole placement and then a discontinuous control component is added so as to cope with the uncertainty presence. In conventional sliding mode the control variable suffers from high frequency oscillations due to the discontinuous control component. However, in the present proposal, the designed control law is applied to the actual system after passing through a chain of integrators. As a consequence, the control input actually fed into the system is continuous, which is a positive feature in terms of chattering attenuation. By applying the proposed controller, the system output is regulated to zero even in the presence of the uncertainties. In the paper, the proposed control law is theoretically analyzed and its performances are demonstrated in simulation. 1. Introduction Output feedback sliding mode control techniques proved themselves to be the good candidate for systems where only output is measurable and its derivatives can be estimated accurately. Linear systems or systems which could be easily lineralized are addressed in Edwards and Spurgeon [1]. Nonlinear systems with measurable outputs are for instance dealt with via Dynamic Sliding Mode Control (DSMC) ([2–4], where the original system is replaced with a differential input-output form often called Fliess Controllable Canonical form or Local generalized controllable canonical (LGCC) form, by using some nonlinear transformation. Asymptotic stabilization of LGCC forms by means of DSMC provided satisfactory results. Traditionally, this control methodology based on the sliding mode control (SMC) theory [5] refers to the case of uncertain systems with matched uncertainties (see, [1] for a definition of this class of uncertainties). However, there are many systems affected by uncertainties which do not satisfy the matching condition. To solve this problem, various methods have been proposed in the literature (see, e.g., [6–11]). These papers of Scararat, Swaroop, and Ferrara relied on a backstepping based SMC design to relax the matching conditions. Nonlinear systems often do not remain robust against uncertainties even of matched nature in the so-called reaching phase. Therefore, an approach capable of eliminating this phase in

References

[1]  C. Edwards and S. K. Spurgeon, Sliding Modes Control: Theory and Applications, Taylor & Francis, London, UK, 1998.
[2]  M. Fliess, “Generalized controller canonical forms for linear and nonlinear dynamics,” IEEE Transactions on Automatic Control, vol. 35, no. 9, pp. 994–1001, 1990.
[3]  H. S. Ramirez, “On the dynamical sliding mode control of nonlinear systems,” International Journal of Control, vol. 57, no. 5, pp. 1039–1061, 1993.
[4]  X.-Y. Lu and S. K. Spurgeon, “Output feedback stabilization of SISO nonlinear systems via dynamic sliding modes,” International Journal of Control, vol. 70, no. 5, pp. 735–759, 1998.
[5]  V. I. Utkin, Sliding Modes in Control Optimization, Springer, Berlin, Germany, 1992.
[6]  J. C. Scarratt, A. Zinober, R. E. Mills, M. Rios-Bolívar, A. Ferrara, and L. Giacomini, “Dynamical adaptive first and second-order sliding backstepping control of nonlinear nontriangular uncertain systems,” Journal of Dynamic Systems, Measurement and Control, vol. 122, no. 4, pp. 746–752, 2000.
[7]  D. Swaroop, J. K. Hedrick, P. P. Yip, and J. C. Gerdes, “Dynamic surface control for a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 45, no. 10, pp. 1893–1899, 2000.
[8]  A. Ferrara and L. Giacomini, “On modular backstepping design with second order sliding modes,” Automatica, vol. 37, no. 1, pp. 129–135, 2001.
[9]  S. Tong and H.-X. Li, “Fuzzy adaptive sliding-mode control for MIMO nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 3, pp. 354–360, 2003.
[10]  S.-C. Tong, X.-L. He, and H.-G. Zhang, “A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 5, pp. 1059–1069, 2009.
[11]  S. Tong, C. Liu, and Y. Li, “Fuzzy-adaptive decentralized output-feedback control for large-scale nonlinear systems with dynamical uncertainties,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 5, pp. 845–861, 2010.
[12]  V. I. Utkin, J. Guldner, and J. Shi, Sliding Mode Control in Electromechanical Systems, Taylor & Francis, London, UK, 1999.
[13]  A. Levant and L. Alelishvili, “Integral high-order sliding modes,” IEEE Transactions on Automatic Control, vol. 52, no. 7, pp. 1278–1282, 2007.
[14]  G. Bartolini, A. Ferrara, and E. Usai, “Output tracking control of uncertain nonlinear second-order systems,” Automatica, vol. 33, no. 12, pp. 2203–2212, 1997.
[15]  G. Bartolini, A. Ferrara, and E. Usai, “Chattering avoidance by second-order sliding mode control,” IEEE Transactions on Automatic Control, vol. 43, no. 2, pp. 241–246, 1998.
[16]  A. Levant, “Higher-order sliding modes, differentiation and output-feedback control,” International Journal of Control, vol. 76, no. 9-10, pp. 924–941, 2003.
[17]  I. Boiko, L. Fridman, and M. I. Castellanos, “Analysis of second-order sliding-mode algorithms in the frequency domain,” IEEE Transactions on Automatic Control, vol. 49, no. 6, pp. 946–950, 2004.
[18]  A. Levant, “Quasi-continuous high-order sliding mode controllers,” IEEE Transaction on Automatic Control, vol. 50, no. 11, pp. 1812–1816, 2005.
[19]  F. Dinuzzo and A. Ferrara, “Higher order sliding mode controllers with optimal reaching,” IEEE Transactions on Automatic Control, vol. 54, no. 9, pp. 2126–2136, 2009.
[20]  H. H. Choi, “Variable structure output feedback control design for a class of uncertain dynamic systems,” Automatica, vol. 38, no. 2, pp. 335–341, 2002.
[21]  P. Park, D. J. Choi, and S. G. Kong, “Output feedback variable structure control for linear systems with uncertainties and disturbances,” Automatica, vol. 43, no. 1, pp. 72–79, 2007.
[22]  J. Xiang, W. Wei, and H. Su, “An ILMI approach to robust static output feedback sliding mode control,” International Journal of Control, vol. 79, no. 8, pp. 959–967, 2006.
[23]  J. M. A. da Silva, C. Edwards, and S. K. Spurgeon, “Sliding-mode output-feedback control based on LMIs for plants with mismatched uncertainties,” IEEE Transactions on Industrial Electronics, vol. 56, no. 9, pp. 3675–3683, 2009.
[24]  W.-J. Cao and J.-X. Xu, “Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems,” IEEE Transactions on Automatic Control, vol. 49, no. 8, pp. 1355–1360, 2004.
[25]  F. Casta?os and L. Fridman, “Analysis and design of integral sliding manifolds for systems with unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 51, no. 5, pp. 853–858, 2006.
[26]  M. Rubagotti, A. Estrada, F. Casta?os, A. Ferrara, and L. Fridman, “Integral sliding mode control for nonlinear systems with matched and unmatched perturbations,” IEEE Transactions on Automatic Control, vol. 56, no. 11, pp. 2699–2704, 2011.
[27]  J.-L. Chang, “Dynamic output integral sliding-mode control with disturbance attenuation,” IEEE Transactions on Automatic Control, vol. 54, no. 11, pp. 2653–2658, 2009.
[28]  Q. Khan, A. I. Bhatti, and Q. Ahmed, “Dynamic integral sliding mode control of nonlinear SISO systems with states dependent matched and mismatched uncertainties,” in Proceedings of the 18th World Congress of the International Federation of Automatic Control (IFAC '11), pp. 3932–3937, Milan, Italy, September 2011.
[29]  A. Isidori, Nonlinear Control Systems, Springer, 3rd edition, 1995.
[30]  M. Fliess, “Nonlinear control theory and differential algebra,” in Modeling and Adaptive Control, C. Byrness and A. Kurzhanski, Eds., vol. 105 of Lecture Notes in Control and Information Science, pp. 134–145, Springer, New York, NY, USA, 1988.
[31]  Q. Khan, A. I. Bhatti, S. Iqbal, and M. Iqbal, “Dynamic integral sliding mode for MIMO uncertain nonlinear systems,” International Journal of Control, Automation and Systems, vol. 9, no. 1, pp. 151–160, 2011.
[32]  G. Bartolini, A. Pisano, E. Punta, and E. Usai, “A survey of applications of second-order sliding mode control to mechanical systems,” International Journal of Control, vol. 76, no. 9-10, pp. 875–892, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133