全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Oxidative Stress and Its Clinical Applications in Dementia

DOI: 10.1155/2013/319898

Full-Text   Cite this paper   Add to My Lib

Abstract:

Dementia is a complex disorder that mostly affects the elderly and represents a significant and growing public health burden in the world. Alzheimer’s disease (AD)- associated dementia and dementia with Lewy bodies (DLB) are the most common forms of dementia, in which oxidative stress is significantly involved. Oxidative stress mechanisms may have clinical applications, that is, providing information for potential biomarkers. Thus brain-rich peptides with an antioxidant property, such as CART (cocaine- and amphetamine-regulated transcript), may be promising new markers. This paper summarizes the progress in research regarding oxidative stress in dementia with a focus on potential biomarkers in the cerebrospinal fluid (CSF) in the main forms of dementia. Other central and peripheral biomarkers, especially those considered oxidative stress related, are also discussed. This paper aims to provide information to improve current understanding of the pathogenesis and progression of dementia. It also offers insight into the differential diagnosis of AD and DLB. 1. Introduction Dementia is a multisystem-related neurodegenerative disorder. According to the DSM-IIIR (the Diagnostic and Statistical Manual, 3rd edition, revised) the essential feature of dementia is impairment in short- and long-term memory, associated with impairment in abstract thinking, impaired judgment, other disturbances of higher cortical function, or personality change. The disturbance is severe enough to interfere significantly with work or usual social activities or relationships with others. The diagnosis of dementia is not made if these symptoms occur in delirium. The DSM-IIIR definition of dementia is reliable and is routinely used in clinical guidelines [1, 2]. There are several forms of dementia, including dementia associated with Alzheimer’s disease (AD), dementia with Lewy bodies (DLB), corticobasal degeneration/dementia (CBD), frontotemporal dementias (FTD) (also known as frontotemporal lobar degenerations or FTLD), vascular dementia (VAD), and prion diseases such as Creutzfeldt-Jakob Disease (CJD) [1, 3]. Among all forms of dementia, Alzheimer’s dementia and dementia with Lewy bodies are the most common. AD is accounting for 60–80% of the total number of dementia, characterized by extracellular fibrillar amyloid β (Aβ), especially long form 42 amino acids of Aβ (Aβ42) deposits (amyloid plaques), intracellular neurofibrillary tangles (NFT, phosphate-tau related), and neuronal as well as axonal degeneration in the brain [4–6]. Dementia with Lewy bodies (DLB), accounting for 15–30% of

References

[1]  D. S. Knopman, S. T. DeKosky, J. L. Cummings et al., “Practice parameter: diagnosis of dementia (an evidence-based review): report of the quality standards subcommittee of the american academy of neurology,” Neurology, vol. 56, no. 9, pp. 1143–1153, 2001.
[2]  B. T. Hyman, C. H. Phelps, T. G. Beach, et al., “National institute on aging-alzheimer's association guidelines for the neuropathologic assessment of Alzheimer's disease,” Alzheimer's & Dementia, vol. 8, no. 1, pp. 1–13, 2012.
[3]  N. S. Schoonenboom, F. E. Reesink, N. A. Verwey, et al., “Cerebrospinal fluid markers for differential dementia diagnosis in a large memory clinic cohort,” Neurology, vol. 78, no. 1, pp. 47–54, 2012.
[4]  M. T. Lin and M. F. Beal, “Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases,” Nature, vol. 443, no. 7113, pp. 787–795, 2006.
[5]  L. J. Martin, “Mitochondrial and cell death nechanisms in neurodegenerative diseases,” Pharmaceuticals (Basel), vol. 3, no. 4, pp. 839–915, 2010.
[6]  P. Mao and P. H. Reddy, “Aging and amyloid beta-induced oxidative DNA damage and mitochondrial dysfunction in Alzheimer's disease: implications for early intervention and therapeutics,” Biochimica et Biophysica Acta, vol. 1812, no. 11, pp. 1359–1370, 2011.
[7]  I. G. McKeith, D. J. Burn, C. G. Ballard et al., “Dementia with Lewy bodies,” Seminars in Clinical Neuropsychiatry, vol. 8, no. 1, pp. 46–57, 2003.
[8]  K. A. Jellinger, “Formation and development of Lewy pathology: a critical update,” Journal of Neurology, vol. 256, no. 3, supplement, pp. S270–S279, 2009.
[9]  E. B. Mukaetova-Ladinska, R. Monteith, and E. K. Perry, “Cerebrospinal fluid biomarkers for Dementia with Lewy bodies,” International Journal of Alzheimer's Disease, vol. 2010, Article ID 536538, 17 pages, 2010.
[10]  P. Mao, A. Ardeshiri, R. Jacks, S. Yang, P. D. Hurn, and N. J. Alkayed, “Mitochondrial mechanism of neuroprotection by CART,” European Journal of Neuroscience, vol. 26, no. 3, pp. 624–632, 2007.
[11]  P. Mao, C. K. Meshul, P. Thuillier, N. R. Goldberg, and P. H. Reddy, “CART peptide is a potential endogenous antioxidant and preferentially localized in mitochondria,” PLoS ONE, vol. 7, no. 1, article e29343, 2012.
[12]  J. E. Selfridge, L. Eb, J. Lu, and R. H. Swerdlow, “Role of mitochondrial homeostasis and dynamics in Alzheimer's disease,” Neurobiology of Disease. In press.
[13]  M. A. Lovell and W. R. Markesbery, “Oxidatively modified RNA in mild cognitive impairment,” Neurobiology of Disease, vol. 29, no. 2, pp. 169–175, 2008.
[14]  A. Nunomura, G. Perry, G. Aliev et al., “Oxidative damage is the earliest event in Alzheimer disease,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 8, pp. 759–767, 2001.
[15]  D. Praticò, K. Uryu, S. Leight, J. Q. Trojanoswki, and V. M. Y. Lee, “Increased lipid peroxidation precedes amyloid plaque formation in an animal model of alzheimer amyloidosis,” Journal of Neuroscience, vol. 21, no. 12, pp. 4183–4187, 2001.
[16]  L. Migliore, I. Fontana, F. Trippi et al., “Oxidative DNA damage in peripheral leukocytes of mild cognitive impairment and AD patients,” Neurobiology of Aging, vol. 26, no. 5, pp. 567–573, 2005.
[17]  R. Sultana, D. Boyd-Kimball, H. F. Poon et al., “Redox proteomics identification of oxidized proteins in Alzheimer's disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD,” Neurobiology of Aging, vol. 27, no. 11, pp. 1564–1576, 2006.
[18]  P. Bermejo, S. Martín-Aragón, J. Benedí et al., “Differences of peripheral inflammatory markers between mild cognitive impairment and Alzheimer's disease,” Immunology Letters, vol. 117, no. 2, pp. 198–202, 2008.
[19]  L. L. Torres, N. B. Quaglio, G. T. de Souza, et al., “Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 26, no. 1, pp. 59–68, 2011.
[20]  M. A. Lovell and W. R. Markesbery, “Oxidative damage in mild cognitive impairment and early Alzheimer's disease,” Journal of Neuroscience Research, vol. 85, no. 14, pp. 3036–3040, 2007.
[21]  L. M. Sayre, D. A. Zelasko, P. L. R. Harris, G. Perry, R. G. Salomon, and M. A. Smith, “4-Hydroxynonenal-derived advanced lipid peroxidation end products are increased in Alzheimer's disease,” Journal of Neurochemistry, vol. 68, no. 5, pp. 2092–2097, 1997.
[22]  R. Sultana, P. Mecocci, F. Mangialasche, R. Cecchetti, M. Baglioni, and D. A. Butterfield, “Increased protein and lipid oxidative damage in mitochondria isolated from lymphocytes from patients with alzheimer's disease: insights into the role of oxidative stress in alzheimer's disease and initial investigations into a potential biomarker for this dementing disorder,” Journal of Alzheimer's Disease, vol. 24, no. 1, pp. 77–84, 2011.
[23]  J. Laurén, D. A. Gimbel, H. B. Nygaard, J. W. Gilbert, and S. M. Strittmatter, “Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers,” Nature, vol. 457, no. 7233, pp. 1128–1132, 2009.
[24]  D. J. Kyle, E. Schaefer, G. Patton, and A. Beiser, “Low serum docosahexaenoic acid is a significant risk factor for Alzheimer's dementia,” Lipids, vol. 34, no. 6, supplement, p. S245, 1999.
[25]  M. Soderberg, C. Edlund, K. Kristensson, and G. Dallner, “Fatty acid composition of brain phospholipids in aging and in Alzheimer's disease,” Lipids, vol. 26, no. 6, pp. 421–425, 1991.
[26]  M. R. Prasad, M. A. Lovell, M. Yatin, H. Dhillon, and W. R. Markesbery, “Regional membrane phospholipid alterations in Alzheimer's disease,” Neurochemical Research, vol. 23, no. 1, pp. 81–88, 1998.
[27]  J. Nourooz-Zadeh, E. H. C. Liu, B. Yhlen, E. E. ?ngg?rd, and B. Halliwell, “F4-isoprostanes as specific marker of docosahexaenoic acid peroxidation in Alzheimer's disease,” Journal of Neurochemistry, vol. 72, no. 2, pp. 734–740, 1999.
[28]  T. J. Montine, M. D. Neely, J. F. Quinn et al., “Lipid peroxidation in aging brain and Alzheimer's disease,” Free Radical Biology and Medicine, vol. 33, no. 5, pp. 620–626, 2002.
[29]  D. Praticò, V. M. Y. Lee, J. Q. Trojanowski, J. Rokach, and G. A. Fitzgerald, “Increased F2-isoprostanes in Alzheimer's disease: evidence for enhanced lipid peroxidation in vivo,” The FASEB Journal, vol. 12, no. 15, pp. 1777–1783, 1998.
[30]  G. P. Lim, F. Calon, T. Morihara et al., “A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model,” Journal of Neuroscience, vol. 25, no. 12, pp. 3032–3040, 2005.
[31]  C. R. Hooijmans, C. E. E. M. Van der Zee, P. J. Dederen et al., “DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice,” Neurobiology of Disease, vol. 33, no. 3, pp. 482–498, 2009.
[32]  D. S. Auld, T. J. Kornecook, S. Bastianetto, and R. Quirion, “Alzheimer's disease and the basal forebrain cholinergic system: relations to β-amyloid peptides, cognition, and treatment strategies,” Progress in Neurobiology, vol. 68, no. 3, pp. 209–245, 2002.
[33]  R. Schliebs and T. Arendt, “The significance of the cholinergic system in the brain during aging and in Alzheimer's disease,” Journal of Neural Transmission, vol. 113, no. 11, pp. 1625–1644, 2006.
[34]  M. A. Daulatzai, “Early stages of pathogenesis in memory impairment during normal senescence and Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 20, no. 2, pp. 355–367, 2010.
[35]  E. Tamagno, M. Guglielmotto, M. Aragno et al., “Oxidative stress activates a positive feedback between the γ- and β-secretase cleavages of the β-amyloid precursor protein,” Journal of Neurochemistry, vol. 104, no. 3, pp. 683–695, 2008.
[36]  C. Shen, Y. Chen, H. Liu et al., “Hydrogen peroxide promotes Aβ production through JNK-dependent activation of γ-secretase,” The Journal of Biological Chemistry, vol. 283, no. 25, pp. 17721–17730, 2008.
[37]  H. Zetterberg, E. Mortberg, L. Song, et al., “Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid beta levels in humans,” PLoS ONE, vol. 6, no. 12, article e28263, 2011.
[38]  D. S. Bredt, P. M. Hwang, C. E. Glatt, C. Lowenstein, R. R. Reed, and S. H. Snyder, “Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase,” Nature, vol. 351, no. 6329, pp. 714–718, 1991.
[39]  D. S. Bredt and S. H. Snyder, “Transient nitric oxide synthase neurons in embryonic cerebral cortical plate, sensory ganglia, and olfactory epithelium,” Neuron, vol. 13, no. 2, pp. 301–313, 1994.
[40]  S. A. Austin, A. V. Santhanam, and Z. S. Katusic, “Endothelial nitric oxide modulates expression and processing of amyloid precursor protein,” Circulation Research, vol. 107, no. 12, pp. 1498–1502, 2010.
[41]  S. Arlt, F. Schulze, M. Eichenlaub et al., “Asymmetrical dimethylarginine is increased in plasma and decreased in cerebrospinal fluid of patients with Alzheimer's disease,” Dementia and Geriatric Cognitive Disorders, vol. 26, no. 1, pp. 58–64, 2008.
[42]  N. V. Morgan, S. K. Westaway, J. E. V. Morton et al., “PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron,” Nature Genetics, vol. 38, no. 7, pp. 752–754, 2006.
[43]  E. Grünblatt, J. Bartl, and P. Riederer, “The link between iron, metabolic syndrome, and Alzheimer's disease,” Journal of Neural Transmission, vol. 118, no. 3, pp. 371–379, 2011.
[44]  A. Mcneill and P. F. Chinnery, “Neurodegeneration with brain iron accumulation,” Handbook of Clinical Neurology, vol. 100, pp. 161–172, 2011.
[45]  M. A. Smith, P. L. R. Harris, L. M. Sayre, and G. Perry, “Iron accumulation in Alzheimer disease is a source of redox-generated free radicals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 94, no. 18, pp. 9866–9868, 1997.
[46]  M. A. Smith, X. Zhu, M. Tabaton et al., “Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment,” Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 353–372, 2010.
[47]  P. K. Mandal, M. Tripathi, and S. Sugunan, “Brain oxidative stress: detection and mapping of anti-oxidant marker “Glutathione” in different brain regions of healthy male/female, MCI and Alzheimer patients using non-invasive magnetic resonance spectroscopy,” Biochemical and Biophysical Research Communications, vol. 417, no. 1, pp. 43–48, 2012.
[48]  H. Vural, H. Demirin, Y. Kara, I. Eren, and N. Delibas, “Alterations of plasma magnesium, copper, zinc, iron and selenium concentrations and some related erythrocyte antioxidant enzyme activities in patients with Alzheimer's disease,” Journal of Trace Elements in Medicine and Biology, vol. 24, no. 3, pp. 169–173, 2010.
[49]  M. Y. Aksenov, H. M. Tucker, P. Nair et al., “The expression of key oxidative stress-handling genes in different brain regions in Alzheimer's disease,” Journal of Molecular Neuroscience, vol. 11, no. 2, pp. 151–164, 1998.
[50]  M. A. Lovell, C. Xie, and W. R. Markesbery, “Decreased glutathione transferase activity in brain and ventricular fluid in Alzheimer's disease,” Neurology, vol. 51, no. 6, pp. 1562–1566, 1998.
[51]  E. Barone, F. Di Domenico, G. Cenini et al., “Oxidative and nitrosative modifications of biliverdin reductase-A in the brain of subjects with Alzheimer's disease and amnestic mild cognitive impairment,” Biochimica et Biophysica Acta, vol. 25, no. 4, pp. 623–633, 2011.
[52]  E. Barone, C. Mancuso, F. Di Domenico, et al., “Biliverdin reductase-A: a novel drug target for atorvastatin in a dog pre-clinical model of Alzheimer disease,” Journal of Neurochemistry, vol. 120, no. 1, pp. 135–146, 2012.
[53]  E. Barone, F. Di Domenico, R. Sultana, et al., “Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment,” Free Radical Biology & Medicine, vol. 52, no. 11-12, pp. 2292–2301, 2012.
[54]  R. A. Nixon and A. M. Cataldo, “The endosomal-lysosomal system of neurons: new roles,” Trends in Neurosciences, vol. 18, no. 11, pp. 489–496, 1995.
[55]  J. Smythies, “What is the function of receptor and membrane endocytosis at the postsynaptic neuron?” Proceedings of the Royal Society B, vol. 267, no. 1450, pp. 1363–1367, 2000.
[56]  S. Grimm, A. Hoehn, K. J. Davies, and T. Grune, “Protein oxidative modifications in the ageing brain: consequence for the onset of neurodegenerative disease,” Free Radical Research, vol. 45, no. 1, pp. 73–88, 2011.
[57]  A. M. Cataldo, D. J. Hamilton, J. L. Barnett, P. A. Paskevich, and R. A. Nixon, “Abnormalities of the endosomal-lysosomal system in Alzheimer's disease: relationship to disease pathogenesis,” Advances in Experimental Medicine and Biology, vol. 389, pp. 271–280, 1996.
[58]  A. M. Cataldo, D. J. Hamilton, J. L. Barnett, P. A. Paskevich, and R. A. Nixon, “Properties of the endosomal-lysosomal system in the human central nervous system: disturbances mark most neurons in populations at risk to degenerate in Alzheimer's disease,” Journal of Neuroscience, vol. 16, no. 1, pp. 186–199, 1996.
[59]  A. M. Cataldo, J. L. Barnett, C. Pieroni, and R. A. Nixon, “Increased neuronal endocytosis and protease delivery to early endosomes in sporadic Alzheimer's disease: neuropathologic evidence for a mechanism of increased β-amyloidogenesis,” Journal of Neuroscience, vol. 17, no. 16, pp. 6142–6151, 1997.
[60]  T. Grune and K. J. Davies, “Breakdown of oxidized proteins as a part of secondary antioxidant defenses in mammalian cells,” Biofactors, vol. 6, no. 2, pp. 165–172, 1997.
[61]  P. Mao, M. Manczak, M. J. Calkins, et al., “Mitochondria-targeted catalase reduces abnormal APP processing, amyloid beta production and BACE1 in a mouse model of Alzheimer's disease: implications for neuroprotection and lifespan extension,” Human Molecular Genetics, vol. 21, no. 13, pp. 2973–2990, 2012.
[62]  S. E. Schriner, N. J. Linford, G. M. Martin et al., “Medecine: extension of murine life span by overexpression of catalase targeted to mitochondria,” Science, vol. 308, no. 5730, pp. 1909–1911, 2005.
[63]  M. J. De Leon, S. Desanti, R. Zinkowski et al., “MRI and CSF studies in the early diagnosis of Alzheimer's disease,” Journal of Internal Medicine, vol. 256, no. 3, pp. 205–223, 2004.
[64]  M. Brys, L. Glodzik, L. Mosconi et al., “Magnetic resonance imaging improves cerebrospinal fluid biomarkers in the early detection of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 16, no. 2, pp. 351–362, 2009.
[65]  K. Blennow and H. Zetterberg, “Is it time for biomarker-based diagnostic criteria for prodromal Alzheimer's disease?” Alzheimer's Research and Therapy, vol. 2, no. 2, article 8, 2010.
[66]  G. M. McKhann, D. S. Knopman, H. Chertkow et al., “The diagnosis of dementia due to Alzheimer's disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease,” Alzheimer's and Dementia, vol. 7, no. 3, pp. 263–269, 2011.
[67]  D. Prvulovic and H. Hampel, “Amyloid β (Aβ) and phospho-tau (p-tau) as diagnostic biomarkers in Alzheimer's disease,” Clinical Chemistry and Laboratory Medicine, vol. 49, no. 3, pp. 367–374, 2011.
[68]  S. Vos, I. van Rossum, L. Burns, et al., “Test sequence of CSF and MRI biomarkers for prediction of AD in subjects with MCI,” Neurobiology of Aging, vol. 33, no. 10, pp. 2272–2281, 2012.
[69]  R. J. Perrin, A. M. Fagan, and D. M. Holtzman, “Multimodal techniques for diagnosis and prognosis of Alzheimer's disease,” Nature, vol. 461, no. 7266, pp. 916–922, 2009.
[70]  I. G. McKeith, D. Galasko, K. Kosaka et al., “Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop,” Neurology, vol. 47, no. 5, pp. 1113–1124, 1996.
[71]  I. G. McKeith, D. W. Dickson, J. Lowe et al., “Diagnosis and management of dementia with Lewy bodies: third report of the DLB consortium,” Neurology, vol. 65, no. 12, pp. 1863–1872, 2005.
[72]  J. B. Leverenz, I. Umar, Q. Wang et al., “Proteomic identification of novel proteins in cortical Lewy bodies,” Brain Pathology, vol. 17, no. 2, pp. 139–145, 2007.
[73]  T. G. Beach, C. H. Adler, L. I. Sue et al., “Reduced striatal tyrosine hydroxylase in incidental Lewy body disease,” Acta Neuropathologica, vol. 115, no. 4, pp. 445–451, 2008.
[74]  W. Maetzler, S. P. Schmid, I. Wurster et al., “Reduced but not oxidized cerebrospinal fluid glutathione levels are lowered in Lewy body diseases,” Movement Disorders, vol. 26, no. 1, pp. 176–181, 2011.
[75]  L. Warr and Z. Walker, “Identification of biomarkers in Lewy-body disorders,” Quarterly Journal of Nuclear Medicine and Molecular Imaging, vol. 56, no. 1, pp. 39–54, 2012.
[76]  N. Sinha, M. Firbank, and J. T. O'Brien, “Biomarkers in dementia with Lewy bodies: a review,” International Journal of Geriatric Psychiatry, vol. 27, no. 5, pp. 443–453, 2011.
[77]  E. Dalfó, M. Portero-Otín, V. Ayala, A. Martínez, R. Pamplona, and I. Ferrer, “Evidence of oxidative stress in the neocortex in incidental Lewy body disease,” Journal of Neuropathology and Experimental Neurology, vol. 64, no. 9, pp. 816–830, 2005.
[78]  E. Dalfó and I. Ferrer, “Early α-synuclein lipoxidation in neocortex in Lewy body diseases,” Neurobiology of Aging, vol. 29, no. 3, pp. 408–417, 2008.
[79]  A. Navarro, A. Boveris, M. J. Bández et al., “Human brain cortex: mitochondrial oxidative damage and adaptive response in Parkinson disease and in dementia with Lewy bodies,” Free Radical Biology and Medicine, vol. 46, no. 12, pp. 1574–1580, 2009.
[80]  P. Mao, P. Gallagher, S. Nedungadi, et al., “Mitochondrial DNA deletions and differential mitochondrial DNA content in Rhesus monkeys: implications for aging,” Biochimica et Biophysica Acta, vol. 1822, no. 2, pp. 111–119, 2012.
[81]  K. Kume, M. Kikukawa, H. Hanyu, et al., “Telomere length shortening in patients with dementia with Lewy bodies,” European Journal of Neurology, vol. 19, no. 6, pp. 905–910, 2012.
[82]  A. M. Valdes, T. Andrew, J. P. Gardner et al., “Obesity, cigarette smoking, and telomere length in women,” The Lancet, vol. 366, no. 9486, pp. 662–664, 2005.
[83]  J. M. J. Houben, H. J. J. Moonen, F. J. van Schooten, and G. J. Hageman, “Telomere length assessment: biomarker of chronic oxidative stress?” Free Radical Biology and Medicine, vol. 44, no. 3, pp. 235–246, 2008.
[84]  M. Balasubramanyam, A. Adaikalakoteswari, Z. Sameermahmood, and V. Mohan, “Biomarkers of oxidative stress: methods and measures of oxidative DNA damage (COMET assay) and telomere shortening,” Methods in Molecular Biology, vol. 610, pp. 245–261, 2010.
[85]  S. Masi, K. D. Salpea, K. Li et al., “Oxidative stress, chronic inflammation, and telomere length in patients with periodontitis,” Free Radical Biology and Medicine, vol. 50, no. 6, pp. 730–735, 2011.
[86]  O. M. Wolkowitz, S. H. Mellon, E. S. Epel et al., “Leukocyte telomere length in major depression: correlations with chronicity, inflammation and oxidative stress—preliminary findings,” PLoS ONE, vol. 6, no. 3, article e17837, 2011.
[87]  K. D. Salpea, P. J. Talmud, J. A. Cooper et al., “Association of telomere length with type 2 diabetes, oxidative stress and UCP2 gene variation,” Atherosclerosis, vol. 209, no. 1, pp. 42–50, 2010.
[88]  A. M. Valdes, I. J. Deary, J. Gardner et al., “Leukocyte telomere length is associated with cognitive performance in healthy women,” Neurobiology of Aging, vol. 31, no. 6, pp. 986–992, 2010.
[89]  F. Grodstein, M. van Oijen, M. C. Irizarry et al., “Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the Nurses' Health Study,” PLoS ONE, vol. 3, no. 2, article e1590, 2008.
[90]  A. Ahmad, C. S. Burns, A. L. Fink, and V. N. Uversky, “Peculiarities of copper binding to alpha-synuclein,” Journal Biomolecular Structure and Dynamics, vol. 29, no. 4, pp. 825–842, 2012.
[91]  A. Gómez and I. Ferrer, “Increased oxidation of certain glycolysis and energy metabolism enzymes in the frontal cortex in lewy body diseases,” Journal of Neuroscience Research, vol. 87, no. 4, pp. 1002–1013, 2009.
[92]  J. H. T. Power and P. C. Blumbergs, “Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson's disease and dementia with Lewy bodies,” Acta Neuropathologica, vol. 117, no. 1, pp. 63–73, 2009.
[93]  M. Manczak, P. Mao, M. J. Calkins et al., “Mitochondria-targeted antioxidants protect against amyloid-β toxicity in Alzheimer's disease neurons,” Journal of Alzheimer's Disease, vol. 20, no. 2, supplement, pp. S609–S631, 2010.
[94]  K. Blennow, H. Hampel, M. Weiner, and H. Zetterberg, “Cerebrospinal fluid and plasma biomarkers in Alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 3, pp. 131–144, 2010.
[95]  N. Andreasen, L. Minthon, A. Clarberg et al., “Sensitivity, specificity, and stability of CSF-tau in AD in a community-based patient sample,” Neurology, vol. 53, no. 7, pp. 1488–1494, 1999.
[96]  H. Hampel, S. J. Teipel, T. Fuchsberger et al., “Value of CSF β-amyloid1-42 and tau as predictors of Alzheimer's disease in patients with mild cognitive impairment,” Molecular Psychiatry, vol. 9, no. 7, pp. 705–710, 2004.
[97]  O. Hansson, H. Zetterberg, P. Buchhave, E. Londos, K. Blennow, and L. Minthon, “Association between CSF biomarkers and incipient Alzheimer's disease in patients with mild cognitive impairment: a follow-up study,” The Lancet Neurology, vol. 5, no. 3, pp. 228–234, 2006.
[98]  A. M. Fagan, C. M. Roe, C. Xiong, M. A. Mintun, J. C. Morris, and D. M. Holtzman, “Cerebrospinal fluid tau/β-amyloid42 ratio as a prediction of cognitive decline in nondemented older adults,” Archives of Neurology, vol. 64, no. 3, pp. 343–349, 2007.
[99]  P. Lewczuk, J. Kornhuber, H. Vanderstichele et al., “Multiplexed quantification of dementia biomarkers in the CSF of patients with early dementias and MCI: a multicenter study,” Neurobiology of Aging, vol. 29, no. 6, pp. 812–818, 2008.
[100]  N. Mattsson, H. Zetterberg, O. Hansson et al., “CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment,” Journal of the American Medical Association, vol. 302, no. 4, pp. 385–393, 2009.
[101]  L. M. Shaw, H. Vanderstichele, M. Knapik-Czajka et al., “Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI,” Acta Neuropathologica, vol. 121, no. 5, pp. 597–609, 2011.
[102]  D. R. Lachno, M. J. Romeo, E. R. Siemers, et al., “Validation of ELISA methods for quantification of total tau and phosporylated-tau181 in human cerebrospinal fluid with measurement in specimens from two Alzheimer's disease studies,” Journal of Alzheimer's Disease, vol. 26, no. 3, pp. 531–541, 2011.
[103]  H. Vanderstichele, M. Bibl, S. Engelborghs, et al., “Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer's disease diagnosis: a consensus paper from the Alzheimer's Biomarkers Standardization Initiative,” Alzheimer's and Dementia, vol. 8, no. 1, pp. 65–73, 2012.
[104]  J. H. Kang, H. Vanderstichele, J. Q. Trojanowski, and L. M. Shaw, “Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer's disease,” Methods, vol. 56, no. 4, pp. 484–493, 2012.
[105]  M. Wagner, S. Wolf, F. M. Reischies, et al., “Biomarker validation of a cued recall memory deficit in prodromal Alzheimer disease,” Neurology, vol. 78, no. 6, pp. 379–386, 2012.
[106]  R. H. Swerdlow and G. A. Jicha, “Alzheimer disease: can the exam predict the pathology?” Neurology, vol. 78, no. 6, pp. 374–375, 2012.
[107]  N. Mattsson, H. Zetterberg, O. Hansson et al., “Age and diagnostic performance of Alzheimer disease CSF biomarkers,” Neurology, vol. 78, no. 7, pp. 468–476, 2012.
[108]  L. Glodzik-Sobanska, E. Pirraglia, M. Brys et al., “The effects of normal aging and ApoE genotype on the levels of CSF biomarkers for Alzheimer's disease,” Neurobiology of Aging, vol. 30, no. 5, pp. 672–681, 2009.
[109]  C. N. Bassett, M. D. Neely, K. R. Sidell, W. R. Markesbery, L. L. Swift, and T. J. Montine, “Cerebrospinal fluid lipoproteins are more vulnerable to oxidation in Alzheimer's disease and are neurotoxic when oxidized ex vivo,” Lipids, vol. 34, no. 12, pp. 1273–1280, 1999.
[110]  T. J. Montine, M. F. Beal, M. E. Cudkowicz et al., “Increased CSF F2-isoprostane concentration in probable AD,” Neurology, vol. 52, no. 3, pp. 562–565, 1999.
[111]  K. S. Montine, J. F. Quinn, J. Zhang et al., “Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases,” Chemistry and Physics of Lipids, vol. 128, no. 1-2, pp. 117–124, 2004.
[112]  T. J. Montine, J. A. Kaye, K. S. Montine, L. McFarland, J. D. Morrow, and J. F. Quinn, “Cerebrospinal fluid Aβ42, tau, and F2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls,” Archives of Pathology and Laboratory Medicine, vol. 125, no. 4, pp. 510–512, 2001.
[113]  T. J. Montine, E. R. Peskind, J. F. Quinn, A. M. Wilson, K. S. Montine, and D. Galasko, “Increased cerebrospinal fluid F2-isoprostanes are associated with aging and latent Alzheimer's disease as identified by biomarkers,” Neuromolecular Medicine, vol. 13, no. 1, pp. 37–43, 2011.
[114]  J. M. Ringman, S. G. Younkin, D. Pratico et al., “Biochemical markers in persons with preclinical familial Alzheimer disease,” Neurology, vol. 71, no. 2, pp. 85–92, 2008.
[115]  L. Mosconi, L. Glodzik, R. Mistur et al., “Oxidative stress and amyloid-beta pathology in normal individuals with a maternal history of Alzheimer's,” Biological Psychiatry, vol. 68, no. 10, pp. 913–921, 2010.
[116]  C. M. Gao, A. Y. Yam, X. Wang et al., “Aβ40 oligomers identified as a potential biomarker for the diagnosis of alzheimer's disease,” PLoS ONE, vol. 5, no. 12, article e15725, 2010.
[117]  C. Isobe, T. Abe, and Y. Terayama, “Increase in the oxidized/total coenzyme q-10 ratio in the cerebrospinal fluid of alzheimer's disease patients,” Dementia and Geriatric Cognitive Disorders, vol. 28, no. 5, pp. 449–454, 2009.
[118]  M. Bibl, B. Mollenhauer, P. Lewczuk et al., “Validation of amyloid-β peptides in CSF diagnosis of neurodegenerative dementias,” Molecular Psychiatry, vol. 12, no. 7, pp. 671–680, 2007.
[119]  B. Mollenhauer, H. Esselmann, C. Trenkwalder et al., “CSF amyloid-β peptides in neuropathologically diagnosed dementia with lewy bodies and alzheimer's disease,” Journal of Alzheimer's Disease, vol. 24, no. 2, pp. 383–391, 2011.
[120]  C. H. Konings, M. A. Kuiper, T. Teerlink, C. Mulder, P. Scheltens, and E. C. Wolters, “Normal cerebrospinal fluid glutathione concentrations in Parkinson's disease, Alzheimer's disease and multiple system atrophy,” Journal of the Neurological Sciences, vol. 168, no. 2, pp. 112–115, 1999.
[121]  F. Bostr?m, O. Hansson, L. Gerhardsson et al., “CSF Mg and Ca as diagnostic markers for dementia with Lewy bodies,” Neurobiology of Aging, vol. 30, no. 8, pp. 1265–1271, 2009.
[122]  W. Maetzler, V. Stoycheva, B. Schmid et al., “Neprilysin activity in cerebrospinal fluid is associated with dementia and amyloid-β42 levels in lewy body disease,” Journal of Alzheimer's Disease, vol. 22, no. 3, pp. 933–938, 2010.
[123]  W. Maetzler, B. Schmid, M. Synofzik et al., “The CST3 BB genotype and low cystatin C cerebrospinal fluid levels are associated with dementia in lewy body disease,” Journal of Alzheimer's Disease, vol. 19, no. 3, pp. 937–942, 2010.
[124]  H. M. Nielsen, S. Palmqvist, L. Minthon, E. Londos, and M. Wennstr?m, “Gender-dependent levels of hyaluronic Acid in cerebrospinal fluid of patients with neurodegenerative dementia,” Current Alzheimer Research, vol. 9, no. 3, pp. 257–266, 2012.
[125]  G. Rogge, D. Jones, G. W. Hubert, Y. Lin, and M. J. Kuhar, “CART peptides: regulators of body weight, reward and other functions,” Nature Reviews Neuroscience, vol. 9, no. 10, pp. 747–758, 2008.
[126]  M. A. Upadhya, K. T. Nakhate, D. M. Kokare, P. S. Singru, and N. K. Subhedar, “Cocaine- and amphetamine-regulated transcript peptide increases spatial learning and memory in rats,” Life Sciences, vol. 88, no. 7-8, pp. 322–334, 2011.
[127]  J. L. Whitwell, S. D. Weigand, M. M. Shiung et al., “Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from alzheimer's disease,” Brain, vol. 130, no. 3, pp. 708–719, 2007.
[128]  Y. S. Piao, K. Wakabayashi, S. Hayashi, M. Yoshimoto, and H. Takahashi, “Aggregation of α-synuclein/NACP in the neuronal and glial cells in diffuse Lewy body disease: a survey of six patients,” Clinical Neuropathology, vol. 19, no. 4, pp. 163–169, 2000.
[129]  K. Schultz, S. Wiehager, K. Nilsson et al., “Reduced CSF CART in dementia with Lewy bodies,” Neuroscience Letters, vol. 453, no. 2, pp. 104–106, 2009.
[130]  S. Engelborghs, E. Vloeberghs, N. Le Bastard et al., “The dopaminergic neurotransmitter system is associated with aggression and agitation in frontotemporal dementia,” Neurochemistry International, vol. 52, no. 6, pp. 1052–1060, 2008.
[131]  K. R. Shieh, “Effects of the cocaine- and amphetamine-regulated transcript peptide on the turnover of central dopaminergic neurons,” Neuropharmacology, vol. 44, no. 7, pp. 940–948, 2003.
[132]  P. Mao, “Potential antidepressant role of neurotransmitter CART: implications for mental disorders,” Depression Research and Treatment, vol. 2011, Article ID 762139, 11 pages, 2011.
[133]  K. Blennow, G. de Meyer, O. Hansson et al., “Evolution of Aβ42 and Aβ40 levels and Aβ42/Aβ40 ratio in plasma during progression of Alzheimer's disease: a multicenter assessment,” Journal of Nutrition, Health and Aging, vol. 13, no. 3, pp. 205–208, 2009.
[134]  N. Le Bastard, L. Aerts, J. Leurs, W. Blomme, P. P. De Deyn, and S. Engelborghs, “No correlation between time-linked plasma and CSF Aβ levels,” Neurochemistry International, vol. 55, no. 8, pp. 820–825, 2009.
[135]  E. Mossello, E. Ballini, A. M. Mello et al., “Biomarkers of alzheimer's disease: from central nervous system to periphery?” International Journal of Alzheimer's Disease, vol. 2011, Article ID 342980, 7 pages, 2011.
[136]  O. Hansson, H. Zetterberg, E. Vanmechelen et al., “Evaluation of plasma Aβ40 and Aβ42 as predictors of conversion to Alzheimer's disease in patients with mild cognitive impairment,” Neurobiology of Aging, vol. 31, no. 3, pp. 357–367, 2010.
[137]  M. Fei, W. Jianghua, M. Rujuan, Z. Wei, and W. Qian, “The relationship of plasma Aβ levels to dementia in aging individuals with mild cognitive impairment,” Journal of the Neurological Sciences, vol. 305, no. 1-2, pp. 92–96, 2011.
[138]  F. Di Domenico, R. Coccia, D. A. Butterfield, and M. Perluigi, “Circulating biomarkers of protein oxidation for Alzheimer disease: expectations within limits,” Biochimica et Biophysica Acta, vol. 1814, no. 12, pp. 1785–1795, 2011.
[139]  N. Ertekin-Taner, L. H. Younkin, D. M. Yager et al., “Plasma amyloid beta protein is elevated in late-onset alzheimer disease families,” Neurology, vol. 70, no. 8, pp. 596–606, 2008.
[140]  I. Blasko, G. Kemmler, S. Jungwirth et al., “Plasma amyloid beta-42 independently predicts both late-onset depression and Alzheimer disease,” American Journal of Geriatric Psychiatry, vol. 18, no. 11, pp. 973–982, 2010.
[141]  T. J. Montine, L. Shinobu, K. S. Montine, et al., “No difference in plasma or urinary F2-isoprostanes among patients with Huntington's disease or Alzheimer's disease and controls,” Annals of Neurology, vol. 48, no. 6, p. 950, 2000.
[142]  T. J. Montine, J. F. Quinn, K. S. Montine, J. A. Kaye, and J. C. S. Breitner, “Quantitative in vivo biomarkers of oxidative damage and their application to the diagnosis and management of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 8, no. 4, pp. 359–367, 2005.
[143]  S. Magaki, R. Raghavan, C. Mueller, K. C. Oberg, H. V. Vinters, and W. M. Kirsch, “Iron, copper, and iron regulatory protein 2 in Alzheimer's disease and related dementias,” Neuroscience Letters, vol. 418, no. 1, pp. 72–76, 2007.
[144]  C. Mueller, M. Schrag, A. Crofton, et al., “Altered serum iron and copper homeostasis predicts cognitive decline in mild cognitive impairment,” Journal of Alzheimer's Disease, vol. 29, no. 2, pp. 341–350, 2012.
[145]  O. Zengi, A. Karakas, U. Ergun, M. Senes, L. Inan, and D. Yucel, “Urinary 8-hydroxy-2′-deoxyguanosine level and plasma paraoxonase 1 activity with Alzheimer's disease,” Clinical Chemistry Laboratory Medicine, vol. 50, no. 3, pp. 529–534, 2011.
[146]  R. H. Swerdlow, “Brain aging, Alzheimer's disease, and mitochondria,” Biochimica et Biophysica Acta, vol. 1812, no. 12, pp. 1630–1639, 2011.
[147]  R. H. Swerdlow, “Alzheimer's disease pathologic cascades: who comes first, what drives what,” Neurotoxicity Research, vol. 22, no. 3, pp. 182–194, 2012.
[148]  G. Straten, G. W. Eschweiler, W. Maetzler, C. Laske, and T. Leyhe, “Glial cell-line derived neurotrophic factor (GDNF) concentrations in cerebrospinal fluid and serum of patients with early Alzheimer's disease and normal controls,” Journal of Alzheimer's Disease, vol. 18, no. 2, pp. 331–337, 2009.
[149]  M. M. Reddy, R. Wilson, J. Wilson et al., “Identification of candidate IgG biomarkers for Alzheimer's disease via combinatorial library screening,” Cell, vol. 144, no. 1, pp. 132–142, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133