Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of disorders affecting both motor and sensory neurons in the peripheral nervous system. Mutations in the MFN2 gene cause an axonal form of CMT, CMT2A. The V705I variant in MFN2 has been previously reported as a disease-causing mutation in families with CMT2. We identified an affected index patient from an Australian multigenerational family with the V705I variant. Segregation analysis showed that the V705I variant did not segregate with the disease phenotype and was present in control individuals with an allele frequency of 4.4%. We, therefore, propose that the V705I variant is a polymorphism and not a disease-causing mutation as previously reported. 1. Introduction Charcot-Marie-Tooth (CMT), also known as hereditary motor and sensory neuropathy, is classified into two major categories: type 1 and type 2 based on the value of motor median nerve conduction velocity (NCV) [1]. CMT1, also known as the demyelinating form of CMT, is clinically characterized by slow NCVs due to myelin sheath abnormalities. CMT2 is as an axonal degeneration and is characterized by the reduction of the amplitudes of motor and sensory nerve action potentials with relatively normal conduction velocities [2]. The most common subtype of CMT2 is CMT2A, an autosomal dominant axonal degeneration of motor and sensory nerves caused by mutations in the mitochondrial mitofusin-2 (MFN2) gene (MIM 608507) [3]. Mutations in the MFN2 gene are the most common cause for CMT2 [2–6]. MFN2 is involved in mitochondrial fusion and the maintenance of mitochondrial morphology [7–9]. Numerous studies have reported mutations in the MFN2 gene; the majority are point mutations [10]. We have identified the single base change c.2113G > A changing valine to isoleucine (V705I) of the MFN2 gene in a patient from a multigenerational Australian family (CMT105) with CMT2 and pyramidal signs. The V705I variant of MFN2 has been previously reported as a disease causing mutation in single individuals with CMT2 [11, 12]. To determine if this variant causes CMT2 in the family, we performed segregation analysis and tested the variant in a cohort of ethnically matched controls of English descent. 2. Methods 2.1. Subjects Thirty-two individuals from a large, multigeneration Australian CMT2 family (CMT105) were tested (Figure 1). Sixteen individuals were clinically affected. Informed consent was obtained from all participants according to protocols approved by the Sydney Local Health District Human Ethics Committee. Genomic DNA was
References
[1]
A. E. Harding and P. K. Thomas, “Genetic aspects of hereditary motor and sensory neuropathy (types I and II),” Journal of Medical Genetics, vol. 17, no. 5, pp. 329–336, 1980.
[2]
I. Banchs, C. Casasnovas, A. Albertí et al., “Diagnosis of Charcot-Marie-Tooth disease,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 985415, 10 pages, 2009.
[3]
S. Züchner, I. V. Mersiyanova, M. Muglia et al., “Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A,” Nature Genetics, vol. 36, no. 5, pp. 449–451, 2004.
[4]
E. So?tysińska, D. Kabzińska, and A. Kochański, “Mutations in the mitofusin 2 gene are the most common cause of Charcot-Marie-Tooth type 2 disease,” Neurologia i Neurochirurgia Polska, vol. 41, no. 4, pp. 350–354, 2007.
[5]
K. Verhoeven, K. G. Claeys, S. Züchner et al., “MFN2 mutation distribution and genotype/phenotype correlation in Charcot-Marie-Tooth type 2,” Brain, vol. 129, no. 8, pp. 2093–2102, 2006.
[6]
E. A. Amiott, P. Lott, J. Soto et al., “Mitochondrial fusion and function in Charcot-Marie-Tooth type 2A patient fibroblasts with mitofusin 2 mutations,” Experimental Neurology, vol. 211, no. 1, pp. 115–127, 2008.
[7]
N. Ishihara, Y. Eura, and K. Mihara, “Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity,” Journal of Cell Science, vol. 117, part 26, pp. 6535–6546, 2004.
[8]
F. Legros, A. Lombès, P. Frachon, and M. Rojo, “Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4343–4354, 2002.
[9]
Y. Eura, N. Ishihara, S. Yokota, and K. Mihara, “Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion,” Journal of Biochemistry, vol. 134, no. 3, pp. 333–344, 2003.
K. Engelfried, M. Vorgerd, M. Hagedorn et al., “Charcot-Marie-Tooth neuropathy type 2A: novel mutations in the mitofusin 2 gene (MFN2),” BMC Medical Genetics, vol. 7, article 53, 2006.
[12]
G. J. Braathen, J. C. Sand, A. Lobato, H. H?yer, and M. B. Russell, “MFN2 point mutations occur in 3.4% of Charcot-Marie-Tooth families. An investigation of 232 Norwegian CMT families,” BMC Medical Genetics, vol. 11, no. 1, article 48, 2010.
[13]
S. Gopinath, I. P. Blair, M. L. Kennerson, J. C. Durnall, and G. A. Nicholson, “A novel locus for distal motor neuron degeneration maps to chromosome 7q34-q36,” Human Genetics, vol. 121, no. 5, pp. 559–564, 2007.
[14]
S. Vucic, M. Kennerson, D. Zhu, E. Miedema, C. Kok, and G. A. Nicholson, “CMT with pyramidal features,” Neurology, vol. 60, no. 4, pp. 696–699, 2003.
[15]
D. Zhu, M. L. Kennerson, G. Walizada, S. Züchner, J. M. Vance, and G. A. Nicholson, “Charcot-Marie-Tooth with pyramidal signs is genetically heterogeneous: families with and without MFN2 mutations,” Neurology, vol. 65, no. 3, pp. 496–497, 2005.
[16]
J. M. Polke, M. Laurá, D. Pareyson et al., “Recessive axonal Charcot-Marie-Tooth disease due to compound heterozygous mitofusin 2 mutations,” Neurology, vol. 77, no. 2, pp. 168–173, 2011.
[17]
G. A. Nicholson, C. Magdelaine, D. Zhu et al., “Severe early-onset axonal neuropathy with homozygous and compound heterozygous MFN2 mutations,” Neurology, vol. 70, no. 19, pp. 1678–1681, 2008.
[18]
J. Calvo, B. Funalot, R. A. Ouvrier et al., “Genotype-phenotype correlations in Charcot-Marie-Tooth disease type 2 caused by mitofusin 2 mutations,” Archives of Neurology, vol. 66, no. 12, pp. 1511–1516, 2009.
[19]
R. G. Cotton and C. R. Scriver, “Proof of, “disease causing” mutation,” Human Mutation, vol. 12, no. 1, pp. 1–3, 1998.
[20]
A. Kochański, “How to assess the pathogenicity of mutations in Charcot-Marie-Tooth disease and other diseases?” Journal of Applied Genetics, vol. 47, no. 3, pp. 255–260, 2006.
[21]
A. Kochański, “Pathogenic mutations and non-pathogenic DNA polymorphisms in the most common neurodegenerative disorders,” Folia Neuropathologica, vol. 45, no. 4, pp. 164–169, 2007.
[22]
K. Tynan, K. Comeau, M. Pearson et al., “Mutation screening of complete fibrillin-1 coding sequence: Report of five new mutations, including two in 8-cysteine domains,” Human Molecular Genetics, vol. 2, no. 11, pp. 1813–1821, 1993.
[23]
M. Wang, K. R. Mathews, K. Imaizumi et al., “P1148A in fibrillin-1 is not a mutation anymore,” Nature genetics, vol. 15, no. 1, p. 12, 1997.
[24]
Y. Watanabe, S. Yano, Y. Koga et al., “P1148A in fibrillin-1 is not a mutation leading to Shprintzen-Goldberg syndrome,” Human mutation, vol. 10, no. 4, pp. 326–327, 1997.