全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Amyloid Beta-Protein and Neural Network Dysfunction

DOI: 10.1155/2013/657470

Full-Text   Cite this paper   Add to My Lib

Abstract:

Understanding the neural mechanisms underlying brain dysfunction induced by amyloid beta-protein (Aβ) represents one of the major challenges for Alzheimer’s disease (AD) research. The most evident symptom of AD is a severe decline in cognition. Cognitive processes, as any other brain function, arise from the activity of specific cell assemblies of interconnected neurons that generate neural network dynamics based on their intrinsic and synaptic properties. Thus, the origin of Aβ-induced cognitive dysfunction, and possibly AD-related cognitive decline, must be found in specific alterations in properties of these cells and their consequences in neural network dynamics. The well-known relationship between AD and alterations in the activity of several neural networks is reflected in the slowing of the electroencephalographic (EEG) activity. Some features of the EEG slowing observed in AD, such as the diminished generation of different network oscillations, can be induced in vivo and in vitro upon Aβ application or by Aβ overproduction in transgenic models. This experimental approach offers the possibility to study the mechanisms involved in cognitive dysfunction produced by Aβ. This type of research may yield not only basic knowledge of neural network dysfunction associated with AD, but also novel options to treat this modern epidemic. 1. Introduction Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by severe cognitive impairments [1, 2]. Postmortem studies of brains from long-term AD patients have revealed the presence of senile plaques that contain the amyloid beta-peptide (Aβ) [3, 4]. Most studies of AD have focused on the biochemical mechanisms involved in the neurodegenerative processes triggered by the Aβ aggregates (for recent reviews, see [5, 6]). Such efforts have provided noteworthy evidence that has explained some aspects of the disease, mainly in its terminal stages; however, it has been difficult to link these findings to the known cognitive and behavioral symptoms that characterize the early stages of the disease. Moreover, new therapeutic approaches to treat AD based on this research have shown little or no benefit (for a recent review, see [7]). By looking at the cellular mechanisms involved in AD physiopathology from another perspective, it is becoming clear that cognitive decline associated with AD, or with any other neurological disease, should be examined in the context of the related neural network dysfunctions [1, 2, 8–10]. This approach, which might look novel for AD, has had proven success for the

References

[1]  D. J. Selkoe, “Alzheimer's disease is a synaptic failure,” Science, vol. 298, no. 5594, pp. 789–791, 2002.
[2]  D. M. Walsh and D. J. Selkoe, “Aβ oligomers: a decade of discovery,” Journal of Neurochemistry, vol. 101, no. 5, pp. 1172–1184, 2007.
[3]  L. F. Lue, Y. M. Kuo, A. E. Roher et al., “Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer's disease,” American Journal of Pathology, vol. 155, no. 3, pp. 853–862, 1999.
[4]  J. N?slund, V. Haroutunian, R. Mohs et al., “Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline,” Journal of the American Medical Association, vol. 283, no. 12, pp. 1571–1577, 2000.
[5]  I. Benilova, E. Karran, and B. De Strooper, “The toxic Aβ oligomer and Alzheimer's disease: an emperor in need of clothes,” Nature Neuroscience, vol. 15, no. 3, pp. 349–357, 2012.
[6]  M. Sheng, B. L. Sabatini, and T. C. Südhof, “Synapses and Alzheimer's disease,” Cold Spring Harbor Perspectives in Biology, vol. 4, no. 5, 2012.
[7]  A. Corbett, J. Smith, and C. Ballard, “New and emerging treatments for Alzheimer's disease,” Expert Review of Neurotherapeutics, vol. 12, no. 5, pp. 535–543, 2012.
[8]  J. J. Palop and L. Mucke, “Amyloid-β-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks,” Nature Neuroscience, vol. 13, no. 7, pp. 812–818, 2010.
[9]  D. W. Wesson, R. A. Nixon, E. Levy, and D. A. Wilson, “Mechanisms of neural and behavioral dysfunction in Alzheimer's disease,” Molecular Neurobiology, vol. 43, no. 3, pp. 163–179, 2011.
[10]  F. Pe?a, A. I. Gutiérrez-Lerma, R. Quiroz-Baez, and C. Arias, “The role of β-amyloid protein in synaptic function: implications for Alzheimer's disease therapy,” Current Neuropharmacology, vol. 4, no. 2, pp. 149–163, 2006.
[11]  E. Faught, “Antiepileptic drug trials, the view from the clinic,” Epileptic Disorders, vol. 14, no. 2, pp. 114–123, 2012.
[12]  S. A. R. B. Rombouts, R. Goekoop, C. J. Stam, F. Barkhof, and P. Scheltens, “Delayed rather than decreased BOLD response as a marker for early Alzheimer's disease,” NeuroImage, vol. 26, no. 4, pp. 1078–1085, 2005.
[13]  D. Prvulovic, V. van de Ven, A. T. Sack, K. Maurer, and D. E. J. Linden, “Functional activation imaging in aging and dementia,” Psychiatry Research, vol. 140, no. 2, pp. 97–113, 2005.
[14]  B. Platt, B. Drever, D. Koss et al., “Abnormal cognition, sleep, EEG and brain metabolism in a novel knock-in Alzheimer mouse, PLB1,” PLoS ONE, vol. 6, no. 11, Article ID e27068, 2011.
[15]  D. H. Small, “Network dysfunction in Alzheimer's disease: does synaptic scaling drive disease progression?” Trends in Molecular Medicine, vol. 14, no. 3, pp. 103–108, 2008.
[16]  J. P. Cleary, D. M. Walsh, J. J. Hofmeister et al., “Natural oligomers of the amyloid-β protein specifically disrupt cognitive function,” Nature Neuroscience, vol. 8, no. 1, pp. 79–84, 2005.
[17]  S. Lesné, T. K. Ming, L. Kotilinek et al., “A specific amyloid-β protein assembly in the brain impairs memory,” Nature, vol. 440, no. 7082, pp. 352–357, 2006.
[18]  C. Balducci, M. Beeg, M. Stravalaci et al., “Synthetic amyloid-β oligomers impair long-term memory independently of cellular prion protein,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 5, pp. 2295–2300, 2010.
[19]  K. A. Kittelberger, F. Piazza, G. Tesco, and L. G. Reijmers, “Natural amyloid-beta oligomers acutely impair the formation of a contextual fear memory in mice,” PLoS ONE, vol. 7, no. 1, Article ID e29940, 2012.
[20]  E. A. Mugantseva and I. Y. Podolski, “Animal model of Alzheimer's disease: characteristics of EEG and memory,” Central European Journal of Biology, vol. 4, no. 4, pp. 507–514, 2009.
[21]  V. Villette, F. Poindessous-Jazat, A. Simon et al., “Decreased rhythmic GABAergic septal activity and memory-associated θ oscillations after hippocampal amyloid-β pathology in the rat,” Journal of Neuroscience, vol. 30, no. 33, pp. 10991–11003, 2010.
[22]  V. Villette, F. Poindessous-Jazat, B. Bellessort et al., “A new neuronal target for beta-amyloid peptide in the rat hippocampus,” Neurobiology of Aging, vol. 33, no. 6, pp. 1–14, 2012.
[23]  R. D. Traub, N. Spruston, I. Soltesz, A. Konnerth, M. A. Whittington, and J. G. R. Jefferys, “Gamma-frequency oscillations: a neuronal population phenomenon, regulated by synaptic and intrinsic cellular processes, and inducing synaptic plasticity,” Progress in Neurobiology, vol. 55, no. 6, pp. 563–575, 1998.
[24]  G. Buzsáki, “Theta oscillations in the hippocampus,” Neuron, vol. 33, no. 3, pp. 325–340, 2002.
[25]  T. Klausberger and P. Somogyi, “Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations,” Science, vol. 321, no. 5885, pp. 53–57, 2008.
[26]  J. M. Ramirez, A. K. Tryba, and F. Pe?a, “Pacemaker neurons and neuronal networks: an integrative view,” Current Opinion in Neurobiology, vol. 14, no. 6, pp. 665–674, 2004.
[27]  M. K. Sun and D. L. Alkon, “Impairment of hippocampal CA1 heterosynaptic transformation and spatial memory by β-amyloid 25–35,” Journal of Neurophysiology, vol. 87, no. 5, pp. 2441–2449, 2002.
[28]  J. E. Driver, C. Racca, M. O. Cunningham et al., “Impairment of hippocampal gamma (γ)-frequency oscillations in vitro in mice overexpressing human amyloid precursor protein (APP),” European Journal of Neuroscience, vol. 26, no. 5, pp. 1280–1288, 2007.
[29]  F. Cacucci, M. Yi, T. J. Wills, P. Chapman, and J. O'Keefe, “Place cell firing correlates with memory deficits and amyloid plaque burden in Tg2576 Alzheimer mouse model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 22, pp. 7863–7868, 2008.
[30]  M. A. Busche, G. Eichhoff, H. Adelsberger et al., “Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer's disease,” Science, vol. 321, no. 5896, pp. 1686–1689, 2008.
[31]  M. A. Busche, X. Chen, H. A. Henning et al., “Critical role of soluble amyloid-β for early hippocampal hyperactivity in a mouse model of Alzheimer's disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 22, pp. 8740–8745, 2012.
[32]  R. Minkeviciene, S. Rheims, M. B. Dobszay et al., “Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy,” Journal of Neuroscience, vol. 29, no. 11, pp. 3453–3462, 2009.
[33]  Y. Wang, G. Zhang, H. Zhou, A. Barakat, and H. Querfurth, “Opposite effects of low and high doses of Aβ42 on electrical network and neuronal excitability in the rat prefrontal cortex,” PLoS ONE, vol. 4, no. 12, Article ID e8366, 2009.
[34]  F. Pe?a, B. Ordaz, H. Balleza-Tapia et al., “Beta-amyloid protein (25-35) disrupts hippocampal network activity: role of Fyn-kinase,” Hippocampus, vol. 20, no. 1, pp. 78–96, 2010.
[35]  L. V. Colom, M. T. Casta?eda, C. Ba?uelos et al., “Medial septal β-amyloid 1-40 injections alter septo-hippocampal anatomy and function,” Neurobiology of Aging, vol. 31, no. 1, pp. 46–57, 2010.
[36]  F. Pe?a-Ortega and R. Bernal-Pedraza, “Amyloid beta peptide slows down sensory-induced hippocampal oscillations,” International Journal of Peptides, vol. 2012, Article ID 236289, 8 pages, 2012.
[37]  P. J. Uhlhaas and W. Singer, “Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology,” Neuron, vol. 52, no. 1, pp. 155–168, 2006.
[38]  M. Bagheri, M. T. Joghataei, S. Mohseni, and M. Roghani, “Genistein ameliorates learning and memory deficits in amyloid β(1-40) rat model of Alzheimer's disease,” Neurobiology of Learning and Memory, vol. 95, no. 3, pp. 270–276, 2011.
[39]  M. Nobakht, S. M. Hoseini, P. Mortazavi et al., “Neuropathological changes in brain cortex and hippocampus in a rat model of Alzheimer's disease,” Iran Biomedical Journal, vol. 15, no. 1, pp. 51–58, 2011.
[40]  B. C. Lega, J. Jacobs, and M. Kahana, “Human hippocampal theta oscillations and the formation of episodic memories,” Hippocampus, vol. 22, no. 4, pp. 748–761, 2012.
[41]  V. S. Sohal, F. Zhang, O. Yizhar, and K. Deisseroth, “Parvalbumin neurons and gamma rhythms enhance cortical circuit performance,” Nature, vol. 459, no. 7247, pp. 698–702, 2009.
[42]  J. W. Kowalski, M. Gawel, A. Pfeffer, and M. Barcikowska, “The diagnostic value of EEG in Alzheimer disease: correlation with the severity of mental impairment,” Journal of Clinical Neurophysiology, vol. 18, no. 6, pp. 570–575, 2001.
[43]  U. Schreiter-Gasser, T. Gasser, and P. Ziegler, “Quantitative EEG analysis in early onset Alzheimer's disease: correlations with severity, clinical characteristics, visual EEG and CCT,” Electroencephalography and Clinical Neurophysiology, vol. 90, no. 4, pp. 267–272, 1994.
[44]  F. Nobili, F. Copello, P. Vitali et al., “Timing of disease progression by quantitative EEG in Alzheimer's patients,” Journal of Clinical Neurophysiology, vol. 16, no. 6, pp. 566–573, 1999.
[45]  R. Ihl, T. Dierks, E. M. Martin, L. Fr?lich, and K. Maurer, “Topography of the maximum of the amplitude of EEG frequency bands in dementia of the Alzheimer type,” Biological Psychiatry, vol. 39, no. 5, pp. 319–325, 1996.
[46]  C. Babiloni, G. B. Frisoni, M. Pievani et al., “Hippocampal volume and cortical sources of EEG alpha rhythms in mild cognitive impairment and Alzheimer disease,” NeuroImage, vol. 44, no. 1, pp. 123–135, 2009.
[47]  K. D. Harris, J. Csicsvari, H. Hirase, G. Dragoi, and G. Buzsáki, “Organization of cell assemblies in the hippocampus,” Nature, vol. 424, no. 6948, pp. 552–556, 2003.
[48]  J. Wang, S. Ikonen, K. Gurevicius, T. van Groen, and H. Tanila, “Alteration of cortical EEG in mice carrying mutated human APP transgene,” Brain Research, vol. 943, no. 2, pp. 181–190, 2002.
[49]  A. Jyoti, A. Plano, G. Riedel, and B. Platt, “EEG, activity, and sleep architecture in a transgenic AβPP swe/PSEN1A246E Alzheimer's disease mouse,” Journal of Alzheimer's Disease, vol. 22, no. 3, pp. 873–887, 2010.
[50]  L. Scott, J. Feng, T. Kiss et al., “Age-dependent disruption in hippocampal theta oscillation in amyloid-β overproducing transgenic mice,” Neurobiology of Aging, vol. 33, no. 7, pp. 13–23, 2012.
[51]  H. Balleza-Tapia, A. Huanosta-Gutiérrez, A. Márquez-Ramos, N. Arias, and F. Pe?a, “Amyloid β oligomers decrease hippocampal spontaneous network activity in an age-dependent manner,” Current Alzheimer Research, vol. 7, no. 5, pp. 453–462, 2010.
[52]  T. D. R. Cummins, M. Broughton, and S. Finnigan, “Theta oscillations are affected by amnestic mild cognitive impairment and cognitive load,” International Journal of Psychophysiology, vol. 70, no. 1, pp. 75–81, 2008.
[53]  A. Adaya-Villanueva, B. Ordaz, H. Balleza-Tapia, A. Márquez-Ramos, and F. Pe?a-Ortega, “Beta-like hippocampal network activity is differentially affected by amyloid beta peptides,” Peptides, vol. 31, no. 9, pp. 1761–1766, 2010.
[54]  J. Shin, “Theta rhythm heterogeneity in humans,” Clinical Neurophysiology, vol. 121, no. 3, pp. 456–457, 2010.
[55]  J. Shin, D. Kim, R. Bianchi, R. K. S. Wong, and H. S. Shin, “Genetic dissection of theta rhythm heterogeneity in mice,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 50, pp. 18165–18170, 2005.
[56]  C. Nerelius, A. Sandegren, H. Sargsyan et al., “α-helix targeting reduces amyloid-β peptide toxicity,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 23, pp. 9191–9196, 2009.
[57]  F. Pe?a-Ortega, A. Solis-Cisneros, B. Ordaz, H. Balleza-Tapia, and J. J. López-Guerrero, “Amyloid beta 1-42 inhibits entorhinal cortex activity in the beta-gamma range: role of GSK-3,” Current Alzheimer Research, vol. 9, no. 7, pp. 857–863, 2012.
[58]  J. P. Wisor, D. M. Edgar, J. Yesavage et al., “Sleep and circadian abnormalities in a transgenic mouse model of Alzheimer's disease: a role for cholinergic transmission,” Neuroscience, vol. 131, no. 2, pp. 375–385, 2005.
[59]  M. Akay, K. Wang, Y. M. Akay, A. Dragomir, and J. Wu, “Nonlinear dynamical analysis of carbachol induced hippocampal oscillations in mice,” Acta Pharmacologica Sinica, vol. 30, no. 6, pp. 859–867, 2009.
[60]  L. Verret, E. O. Mann, G. B. Hang et al., “Inhibitory interneuron deficit links altered network activity and cognitive dysfunction in Alzheimer model,” Cell, vol. 149, no. 3, pp. 708–721, 2012.
[61]  D. Hermann, M. Both, U. Ebert et al., “Synaptic transmission is impaired prior to plaque formation in amyloid precursor protein-overexpressing mice without altering behaviorally-correlated sharp wave-ripple complexes,” Neuroscience, vol. 162, no. 4, pp. 1081–1090, 2009.
[62]  P. E. Cramer, J. R. Cirrito, D. W. Wesson et al., “ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models,” Science, vol. 335, no. 6075, pp. 1503–1506, 2012.
[63]  D. W. Wesson, A. H. Borkowski, G. E. Landreth, R. A. Nixon, E. Levy, and D. A. Wilson, “Sensory network dysfunction, behavioral impairments, and their reversibility in an Alzheimer's β-amyloidosis mouse model,” Journal of Neuroscience, vol. 31, no. 44, pp. 15962–15971, 2011.
[64]  L. V. Colom, “Septal networks: relevance to theta rhythm, epilepsy and Alzheimer's disease,” Journal of Neurochemistry, vol. 96, no. 3, pp. 609–623, 2006.
[65]  L. Carrillo-Reid, F. Tecuapetla, D. Tapia et al., “Encoding network states by striatal cell assemblies,” Journal of Neurophysiology, vol. 99, no. 3, pp. 1435–1450, 2008.
[66]  R. N. Le?o, L. V. Colom, L. Borgius, O. Kiehn, and A. Fisahn, “Medial septal dysfunction by Aβ-induced KCNQ channel-block in glutamatergic neurons,” Neurobiology of Aging, vol. 33, no. 9, pp. 2046–2061, 2012.
[67]  Y. Rui, R. Li, Y. Liu et al., “Acute effect of β amyloid on synchronized spontaneous Ca2+ oscillations in cultured hippocampal networks,” Cell Biology International, vol. 30, no. 9, pp. 733–740, 2006.
[68]  R. R?nicke, M. Mikhaylova, S. R?nicke et al., “Early neuronal dysfunction by amyloid β oligomers depends on activation of NR2B-containing NMDA receptors,” Neurobiology of Aging, vol. 32, no. 12, pp. 2219–2228, 2011.
[69]  S. F. Santos, N. Pierrot, N. Morel, P. Gailly, C. Sindic, and J. N. Octave, “Expression of human amyloid precursor protein in rat cortical neurons inhibits calcium oscillations,” Journal of Neuroscience, vol. 29, no. 15, pp. 4708–4718, 2009.
[70]  J. Fuentealba, A. Dibarrart, F. Saez-Orellana et al., “Synaptic silencing and plasma membrane dyshomeostasis induced by amyloid-β peptide are prevented by Aristotelia chilensis enriched extract,” Journal of Alzheimers Disease, vol. 31, no. 4, pp. 879–889, 2012.
[71]  P. G?rtz, J. Opatz, M. Siebler, S. A. Funke, D. Willbold, and C. Lange-Asschenfeldt, “Transient reduction of spontaneous neuronal network activity by sublethal amyloid β (1-42) peptide concentrations,” Journal of Neural Transmission, vol. 116, no. 3, pp. 351–355, 2009.
[72]  J. J. Palop, J. Chin, E. D. Roberson et al., “Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer's disease,” Neuron, vol. 55, no. 5, pp. 697–711, 2007.
[73]  E. D. Roberson, B. Halabisky, J. W. Yoo et al., “Amyloid-β/fyn-induced synaptic, network, and cognitive impairments depend on tau levels in multiple mouse models of alzheimer's disease,” Journal of Neuroscience, vol. 31, no. 2, pp. 700–711, 2011.
[74]  S. Ziyatdinova, K. Gurevicius, N. Kutchiashvili et al., “Spontaneous epileptiform discharges in a mouse model of Alzheimer's disease are suppressed by antiepileptic drugs that block sodium channels,” Epilepsy Research, vol. 94, no. 1-2, pp. 75–85, 2011.
[75]  K. Gurevicius, A. Lipponen, and H. Tanila, “Increased cortical and thalamic excitability in freely moving appswe/Ps1de9 mice modeling epileptic activity associated with Alzheimer's disease,” Cerebral Cortex. In press.
[76]  J. T. Brown, J. C. Richardson, G. L. Collingridge, A. D. Randall, and C. H. Davies, “Synaptic transmission and synchronous activity is disrupted in hippocampal slices taken from aged TAS10 mice,” Hippocampus, vol. 15, no. 1, pp. 110–117, 2005.
[77]  F. Pe?a and R. Tapia, “Relationships among seizures, extracellular amino acid changes, and neurodegeneration induced by 4-aminopyridine in rat hippocampus: a microdialysis and electroencephalographic study,” Journal of Neurochemistry, vol. 72, no. 5, pp. 2006–2014, 1999.
[78]  F. Pe?a and N. Alavez-Pérez, “Epileptiform activity induced by pharmacologic reduction of M-current in the developing hippocampus in vitro,” Epilepsia, vol. 47, no. 1, pp. 47–54, 2006.
[79]  F. Pe?a, J. Bargas, and R. Tapia, “Paired pulse facilitation is turned into paired pulse depression in hippocampal slices after epilepsy induced by 4-aminopyridine in vivo,” Neuropharmacology, vol. 42, no. 6, pp. 807–812, 2002.
[80]  F. J. Sepúlveda, C. Opazo, and L. G. Aguayo, “Alzheimer β-amyloid blocks epileptiform activity in hippocampal neurons,” Molecular and Cellular Neuroscience, vol. 41, no. 4, pp. 420–428, 2009.
[81]  P. E. Sanchez, L. Zhu, L. Verret et al., “Levetiracetam suppresses neuronal network dysfunction and reverses synaptic and cognitive deficits in an Alzheimer's disease model,” Proceedings of the National Academy of Sciences of the United States of America, vol. 109, no. 42, pp. 2895–2903, 2012.
[82]  R. O. Sanchez-Mejia, J. W. Newman, S. Toh et al., “Phospholipase A2 reduction ameliorates cognitive deficits in a mouse model of Alzheimer's disease,” Nature Neuroscience, vol. 11, no. 11, pp. 1311–1318, 2008.
[83]  H. Balleza-Tapia and F. Pe?a, “Pharmacology of the intracellular pathways activated by amyloid beta protein,” Mini-Reviews in Medicinal Chemistry, vol. 9, no. 6, pp. 724–740, 2009.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133