全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Immunolocalization of Kisspeptin Associated with Amyloid-β Deposits in the Pons of an Alzheimer’s Disease Patient

DOI: 10.1155/2013/879710

Full-Text   Cite this paper   Add to My Lib

Abstract:

The pons region of the Alzheimer’s disease (AD) brain is one of the last to show amyloid-β (Aβ) deposits and has been suggested to contain neuroprotective compounds. Kisspeptin (KP) is a hormone that activates the hypothalamic-pituitary-gonadal axis and has been suggested to be neuroprotective against Aβ toxicity. The localization of KP, plus the established endogenous neuroprotective compounds corticotropin releasing hormone (CRH) and catalase, in tissue sections from the pons region of a male AD subject has been determined in relation to Aβ deposits. Results showed Aβ deposits also stained with KP, CRH, and catalase antibodies. At high magnification the staining of deposits was either KP or catalase positive, and there was only a limited area of the deposits with KP-catalase colocalization. The CRH does not bind Aβ, whilst both KP and catalase can bind Aβ, suggesting that colocalization in Aβ deposits is not restricted to compounds that directly bind Aβ. The neuroprotective actions of KP, CRH, and catalase were confirmed in vitro, and fibrillar Aβ preparations were shown to stimulate the release of KP in vitro. In conclusion, neuroprotective KP, CRH, and catalase all colocalize with Aβ plaque-like deposits in the pons region from a male AD subject. 1. Introduction The deposition of the amyloid-β (Aβ) peptide within plaques in the Alzheimer’s disease (AD) brain is a central feature of the disease pathology [1, 2]. A sequential pattern of Aβ deposition within different regions of the brain has been suggested as AD progresses [3–6]. The staging of Aβ deposition by Thal et al. (2002) [3] identified the cerebellum plus brainstem nuclei including the pons as the last to show Aβ deposits. In transgenic mice overexpressing the human amyloid precursor protein (APP) the Aβ deposition showed a similar sequential pattern, with the cerebellum and pons again the last to show Aβ deposits [7]. The apparent resistance of the cerebellum and pons to neurodegenerative changes suggests that endogenous neuroprotective processes may play a role in these tissues. A range of endogenous compounds have been suggested to have neuroprotective properties against Aβ in AD models [8–16]. In a recent study kisspeptin (KP) peptides were suggested to have neuroprotective properties against Aβ plus related amyloid proteins [17]. The KP peptide is a reproductive hormone [18], and the female hypothalamic levels of KP show elevations after menopause that are not seen in males [19]. Female AD onset is typically postmenopausal, and there is significantly less neurodegeneration in the

References

[1]  C. Reitz, “Alzheimer's disease and the amyloid cascade hypothesis: a critical review,” International Journal of Alzheimer's Disease, vol. 2012, Article ID 369808, 11 pages, 2012.
[2]  E. Karran, M. Mercken, and B. D. Strooper, “The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics,” Nature Reviews Drug Discovery, vol. 10, no. 9, pp. 698–712, 2011.
[3]  D. R. Thal, U. Rüb, M. Orantes, and H. Braak, “Phases of A beta-deposition in the human brain and its relevance for the development of AD,” Neurology, vol. 58, no. 12, pp. 1791–1800, 2002.
[4]  I. Alafuzoff, D. R. Thal, T. Arzberger et al., “Assessment of β-amyloid deposits in human brain: a study of the BrainNet Europe Consortium,” Acta Neuropathologica, vol. 117, no. 3, pp. 309–320, 2009.
[5]  B. T. Hyman, C. H. Phelps, T. G. Beach et al., “National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease,” Alzheimer's & Dementia, vol. 8, no. 1, pp. 1–13, 2012.
[6]  T. J. Montine, C. H. Phelps, T. G. Beach et al., “National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease: a practical approach,” Acta Neuropathologica, vol. 123, no. 1, pp. 1–11, 2012.
[7]  A. Rijal Upadhaya, E. Capetillo-Zarate, I. Kosterin et al., “Dispersible amyloid β-protein oligomers, protofibrils, and fibrils represent diffusible but not soluble aggregates: their role in neurodegeneration in amyloid precursor protein (APP) transgenic mice,” Neurobiology of Aging, vol. 33, no. 11, pp. 2641–2660, 2012.
[8]  D. Caruso, A. M. Barron, M. A. Brown et al., “Age-related changes in neuroactive steroid levels in 3xTg-AD mice,” Neurobiology of Aging, vol. 34, no. 4, pp. 1080–1089, 2013.
[9]  A. Corrales, P. Martínez, S. García et al., “Long-term oral administration of melatonin improves spatial learning and memory and protects against cholinergic degeneration in middle-aged Ts65Dn mice, a model of Down syndrome,” Journal of Pineal Research, vol. 54, no. 3, pp. 346–358, 2013.
[10]  Y. Koutmani, P. K. Politis, M. Elkouris et al., “Corticotropin-releasing hormone exerts direct effects on neuronal progenitor cells: implications for neuroprotection,” Molecular Psychiatry, vol. 18, no. 3, pp. 300–307, 2013.
[11]  G. A. Scullion, K. N. Hewitt, and M. C. Pardon, “Corticotropin-releasing factor receptor 1 activation during exposure to novelty stress protects against alzheimer's disease-like cognitive decline in AβPP/PS1 mice,” Journal of Alzheimer's Disease, vol. 34, no. 3, pp. 781–793, 2013.
[12]  P. Mao, M. Manczak, M. J. Calkins et al., “Mitochondria-targeted catalase reduces abnormal APP processing, amyloid β production and BACE1 in a mouse model of Alzheimer's disease: implications for neuroprotection and lifespan extension,” Human Molecular Genetics, vol. 21, no. 13, pp. 2973–2990, 2012.
[13]  X.-L. Chen, J. Zhang, and C. Chen, “Endocannabinoid 2-arachidonoylglycerol protects neurons against β-amyloid insults,” Neuroscience, vol. 178, pp. 159–168, 2011.
[14]  J. Koppel, H. Bradshaw, T. E. Goldberg et al., “Endocannabinoids in Alzheimer's disease and their impact on normative cognitive performance: a case-control and cohort study,” Lipids in Health and Disease, vol. 8, article 2, 2009.
[15]  V. Micale, C. Mazzola, and F. Drago, “Endocannabinoids and neurodegenerative diseases,” Pharmacological Research, vol. 56, no. 5, pp. 382–392, 2007.
[16]  A. Dejda, P. Soko?owska, and J. Z. Nowak, “Neuroprotective potential of three neuropeptides PACAP, VIP and PHI,” Pharmacological Reports, vol. 57, no. 3, pp. 307–320, 2005.
[17]  N. G. N. Milton, A. Chilumuri, E. Rocha-Ferreira, A. N. Nercessian, and M. Ashioti, “Kisspeptin prevention of amyloid-β peptide neurotoxicity in vitro,” ACS Chemical Neuroscience, vol. 3, no. 9, pp. 706–719, 2012.
[18]  E. J. Mead, J. J. Maguire, R. E. Kuc, and A. P. Davenport, “Kisspeptins: a multifunctional peptide system with a role in reproduction, cancer and the cardiovascular system,” British Journal of Pharmacology, vol. 151, no. 8, pp. 1143–1153, 2007.
[19]  N. E. Rance, “Menopause and the human hypothalamus: evidence for the role of kisspeptin/neurokinin B neurons in the regulation of estrogen negative feedback,” Peptides, vol. 30, no. 1, pp. 111–122, 2009.
[20]  C. Schultz, H. Braak, and E. Braak, “A sex difference in neurodegeneration of the human hypothalamus,” Neuroscience Letters, vol. 212, no. 2, pp. 103–106, 1996.
[21]  N. G. N. Milton, N. P. Mayor, and J. Rawlinson, “Identification of amyloid-β binding sites using an antisense peptide approach,” NeuroReport, vol. 12, no. 11, pp. 2561–2566, 2001.
[22]  N. G. N. Milton and J. R. Harris, “Polymorphism of amyloid-β fibrils and its effects on human erythrocyte catalase binding,” Micron, vol. 40, no. 8, pp. 800–810, 2009.
[23]  M. A. Pappolla, R. A. Omar, K. S. Kim, and N. K. Robakis, “Immunohistochemical evidence of antioxidant stress in Alzheimer's disease,” American Journal of Pathology, vol. 140, no. 3, pp. 621–628, 1992.
[24]  N. G. N. Milton, “Inhibition of catalase activity with 3-amino-triazole enhances the cytotoxicity of the Alzheimer's amyloid-β peptide,” NeuroToxicology, vol. 22, no. 6, pp. 767–774, 2001.
[25]  T. Gáspár, F. Domoki, L. Lenti et al., “Neuroprotective effect of adenoviral catalase gene transfer in cortical neuronal cultures,” Brain Research, vol. 1270, no. C, pp. 1–9, 2009.
[26]  N. G. N. Milton, “Amyloid-beta binds catalase with high affinity and inhibits hydrogen peroxide breakdown,” Biochemical Journal, vol. 344, pp. 293–296, 1999.
[27]  L. K. Habib, M. T. C. Lee, and J. Yang, “Inhibitors of catalase-amyloid interactions protect cells from beta-amyloid-induced oxidative stress and toxicity,” The Journal of Biological Chemistry, vol. 285, no. 50, pp. 38933–38943, 2010.
[28]  N. Bayatti and C. Behl, “The neuroprotective actions of corticotropin releasing hormone,” Ageing Research Reviews, vol. 4, no. 2, pp. 258–270, 2005.
[29]  N. Bayatti, J. Zschocke, and C. Behl, “Brain region-specific neuroprotective action and signaling of corticotropin-releasing hormone in primary neurons,” Endocrinology, vol. 144, no. 9, pp. 4051–4060, 2003.
[30]  L. Facci, D. A. Stevens, M. Pangallo, D. Franceschini, S. D. Skaper, and P. J. L. M. Strijbos, “Corticotropin-releasing factor (CRF) and related peptides confer neuroprotection via type 1 CRF receptors,” Neuropharmacology, vol. 45, no. 5, pp. 623–636, 2003.
[31]  N. G. N. Milton, “Anandamide and noladin ether prevent neurotoxicity of the human amyloid-β peptide,” Neuroscience Letters, vol. 332, no. 2, pp. 127–130, 2002.
[32]  W. A. Pedersen, R. Wan, P. Zhang, and M. P. Mattson, “Urocortin, but not urocortin II, protects cultured hippocampal neurons from oxidative and excitotoxic cell death via corticotropin-releasing hormone receptor type I,” Journal of Neuroscience, vol. 22, no. 2, pp. 404–412, 2002.
[33]  C. R. Elliott-Hunt, J. Kazlauskaite, G. J. C. Wilde, D. K. Grammatopoulos, and E. W. Hillhouse, “Potential signalling pathways underlying corticotrophin-releasing hormone-mediated neuroprotection from excitotoxicity in rat hippocampus,” Journal of Neurochemistry, vol. 80, no. 3, pp. 416–425, 2002.
[34]  R. E. Powers, L. C. Walker, E. B. DeSouza et al., “Immunohistochemical study of neurons containing corticotropin-releasing factor in Alzheimer's disease,” Synapse, vol. 1, no. 5, pp. 405–410, 1987.
[35]  D. F. Swaab, A. M. Bao, and P. J. Lucassen, “The stress system in the human brain in depression and neurodegeneration,” Ageing Research Reviews, vol. 4, no. 2, pp. 141–194, 2005.
[36]  E. B. De Souza, P. J. Whitehouse, D. L. Price, and W. W. Vale, “Abnormalities in corticotropin-releasing hormone (CRH) in Alzheimer's disease and other human disorders,” Annals of the New York Academy of Sciences, vol. 512, pp. 237–247, 1987.
[37]  G. C. Brailoiu, S. L. Dun, M. Ohsawa et al., “KiSS-1 expression and metastin-like immunoreactivity in the rat brain,” Journal of Comparative Neurology, vol. 481, no. 3, pp. 314–329, 2005.
[38]  H. R. Kirby, J. J. Maguire, W. H. Colledge, and A. P. Davenport, “International Union of Basic and Clinical Pharmacology. LXXVII. Kisspeptin receptor nomenclature, distribution, and function,” Pharmacological Reviews, vol. 62, no. 4, pp. 565–578, 2010.
[39]  M. C. Austin, J. E. Janosky, and H. A. Murphy, “Increased corticotropin-releasing hormone immunoreactivity in monoamine-containing pontine nuclei of depressed suicide men,” Molecular Psychiatry, vol. 8, no. 3, pp. 324–332, 2003.
[40]  S. Moreno, E. Mugnaini, and M. P. Ceru, “Immunocytochemical localization of catalase in the central nervous system of the rat,” Journal of Histochemistry and Cytochemistry, vol. 43, no. 12, pp. 1253–1267, 1995.
[41]  J. Samson, R. S. Devi, R. Ravindran, and M. Senthilvelan, “Effect of noise stress on free radical scavenging enzymes in brain,” Environmental Toxicology and Pharmacology, vol. 20, no. 1, pp. 142–148, 2005.
[42]  N. G. N. Milton and J. R. Harris, “Human islet amyloid polypeptide fibril binding to catalase: a transmission electron microscopy and microplate study,” The Scientific World Journal, vol. 10, pp. 879–893, 2010.
[43]  N. G. N. Milton and J. R. Harris, “Fibril formation and toxicity of the non-amyloidogenic rat amylin peptide,” Micron, vol. 44, pp. 246–253, 2013.
[44]  L. A. Kotilinek, B. Bacskai, M. Westerman et al., “Reversible memory loss in a mouse transgenic model of Alzheimer's disease,” Journal of Neuroscience, vol. 22, no. 15, pp. 6331–6335, 2002.
[45]  N. G. N. Milton, “Phosphorylated amyloid-beta: the toxic intermediate in alzheimer's disease neurodegeneration,” Sub-cellular biochemistry, vol. 38, pp. 381–402, 2005.
[46]  N. G. N. Milton, E. W. Hillhouse, S. A. Nicholson, C. H. Self, and A. M. McGregor, “Production and utilization of monoclonal antibodies to human/rat corticotrophin-releasing factor-41,” Journal of Molecular Endocrinology, vol. 5, no. 2, pp. 159–166, 1990.
[47]  N. G. N. Milton, E. W. Hillhouse, and A. S. Milton, “Activation of the hypothalamo-pituitary-adrenocortical axis in the conscious ratbbit by the pyrogen polyinosinic: polycytidylic acid is dependent on corticotrophin-releasing factor-41,” Journal of Endocrinology, vol. 135, no. 1, pp. 69–75, 1992.
[48]  N. G. N. Milton, E. W. Hillhouse, and A. S. Milton, “A possible role for endogenous peripheral corticotrophin-releasing factor-41 in the febrile response of conscious rabbits,” Journal of Physiology, vol. 465, pp. 415–425, 1993.
[49]  T. S. Hwang, H. K. Choi, and H. S. Han, “Differential expression of manganese superoxide dismutase, copper/zinc superoxide dismutase, and catalase in gastric adenocarcinoma and normal gastric mucosa,” European Journal of Surgical Oncology, vol. 33, no. 4, pp. 474–479, 2007.
[50]  M. Ashioti, J. S. Beech, A. S. Lowe, M. B. Hesselink, M. Modo, and S. C. R. Williams, “Multi-modal characterisation of the neocortical clip model of focal cerebral ischaemia by MRI, behaviour and immunohistochemistry,” Brain Research, vol. 1145, no. 1, pp. 177–189, 2007.
[51]  N. Iijima, K. Takumi, N. Sawai, and H. Ozawa, “An immunohistochemical study on the expressional dynamics of kisspeptin neurons relevant to GnRH neurons using a newly developed anti-kisspeptin antibody,” Journal of Molecular Neuroscience, vol. 43, no. 2, pp. 146–154, 2011.
[52]  A. Markiv, R. Beatson, J. Burchell, R. V. Durvasula, and A. S. Kang, “Expression of recombinant multi-coloured fluorescent antibodies in E. coli cytoplasm,” BMC Biotechnology, vol. 11, no. 1, p. 117, 2011.
[53]  N. G. N. Milton, “Homocysteine inhibits hydrogen peroxide breakdown by catalase,” The Open Enzyme Inhibition Journal, vol. 1, pp. 34–41, 2008.
[54]  N. G. N. Milton, “Amyloid-β phosphorylation,” in Cell Biology Protocols, J. R. Harris, J. M. Graham, and D. Rickwood, Eds., vol. 6, pp. 364–368, John Wiley & Sons, Chichester, UK, 2006.
[55]  A. M. Floden and C. K. Combs, “β-Amyloid stimulates murine postnatal and adult microglia cultures in a unique manner,” Journal of Neuroscience, vol. 26, no. 17, pp. 4644–4648, 2006.
[56]  J. F. Jord?o, C. A. Ayala-Grosso, K. Markham et al., “Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-β plaque load in the TgCRND8 mouse model of Alzheimer's disease,” PLoS ONE, vol. 5, no. 5, Article ID e10549, 2010.
[57]  M. A. Bosch, C. Xue, and O. K. R?nnekleiv, “Kisspeptin expression in guinea pig hypothalamus: effects OF 17β-Estradiol,” Journal of Comparative Neurology, vol. 520, no. 10, pp. 2143–2162, 2011.
[58]  J. Cao and H. B. Patisaul, “Sex-specific expression of estrogen receptors α and β and Kiss1 in the postnatal rat amygdala,” Journal of Comparative Neurology, vol. 521, no. 2, pp. 465–478, 2013.
[59]  J. Kim, S. J. Semaan, D. K. Clifton, R. A. Steiner, S. Dhamija, and A. S. Kauffman, “Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse,” Endocrinology, vol. 152, no. 5, pp. 2020–2030, 2011.
[60]  D. H. Eghlidi, G. E. Haley, N. C. Noriega, S. G. Kohama, and H. F. Urbanski, “Influence of age and 17β-estradiol on kisspeptin, neurokinin B, and prodynorphin gene expression in the arcuate-median eminence of female rhesus macaques,” Endocrinology, vol. 151, no. 8, pp. 3783–3794, 2010.
[61]  J. Cao and H. B. Patisaul, “Sexually dimorphic expression of hypothalamic estrogen receptors α and β and Kiss1 in neonatal male and female rats,” Journal of Comparative Neurology, vol. 519, no. 15, pp. 2954–2977, 2011.
[62]  A. Hestiantoro and D. F. Swaab, “Changes in estrogen receptor-α and -β in the infundibular nucleus of the human hypothalamus are related to the occurrence of Alzheimer's disease neuropathology,” Journal of Clinical Endocrinology and Metabolism, vol. 89, no. 4, pp. 1912–1925, 2004.
[63]  T. Funakoshi, A. Yanai, K. Shinoda, M. M. Kawano, and Y. Mizukami, “G protein-coupled receptor 30 is an estrogen receptor in the plasma membrane,” Biochemical and Biophysical Research Communications, vol. 346, no. 3, pp. 904–910, 2006.
[64]  S. B. Cheng, J. A. Quinn, C. T. Graeber, and E. J. Filardo, “Down-modulation of the G-protein-coupled estrogen receptor, GPER, from the cell surface occurs via a trans-golgi-proteasome pathway,” The Journal of Biological Chemistry, vol. 286, no. 25, pp. 22441–22455, 2011.
[65]  Y. Lyubimov, M. Engstrom, S. Wurster, J. M. Savola, E. R. Korpi, and P. Panula, “Human kisspeptins activate neuropeptide FF2 receptor,” Neuroscience, vol. 170, no. 1, pp. 117–122, 2010.
[66]  S. Oishi, R. Misu, K. Tomita et al., “Activation of neuropeptide FF receptors by kisspeptin receptor ligands,” ACS Medicinal Chemistry Letters, vol. 2, no. 1, pp. 53–57, 2011.
[67]  N. G. N. Milton, “In vitro activities of kissorphin, a novel hexapeptide KiSS-1 derivative, in neuronal cells,” Journal of Amino Acids, vol. 2012, Article ID 691463, 6 pages, 2012.
[68]  L. Maletínská, A. Tichá, V. Nagelová et al., “Neuropeptide FF analog RF9 is not an antagonist of NPFF receptor and decreases food intake in mice after its central and peripheral administration,” Brain Research, vol. 1498, pp. 33–40, 2013.
[69]  S. Catarsi, K. Babinski, and P. Séguéla, “Selective modulation of heteromeric ASIC proton-gated channels by neuropeptide FF,” Neuropharmacology, vol. 41, no. 5, pp. 592–600, 2001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133