While studies on death receptors have long been restricted to immune cells, the last decade has provided a strong body of evidence for their implication in neuronal death and hence neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). ALS is a fatal paralytic disorder that primarily affects motoneurons in the brain and spinal cord. A neuroinflammatory process, associated with astrocyte and microglial activation as well as infiltration of immune cells, accompanies motoneuron degeneration and supports the contribution of non-cell-autonomous mechanisms in the disease. Hallmarks of Fas, TNFR, LT-βR, and p7 signaling have been observed in both animal models and ALS patients. This review summarizes to date knowledge of the role of death receptors in ALS and the link existing between the selective loss of motoneurons and neuroinflammation. It further suggests how this recent evidence could be included in an ultimate multiapproach to treat patients. 1. Introduction The name of “death receptors” is associated with the tumor necrosis factor receptor superfamily (TNFRSF) of transmembrane proteins whose first shown function was to induce apoptosis in subtypes of immune cells (for review see [1]). For example, Fas (CD95, Apo1) was identified in 1989 as a receptor being activated during the negative and positive selection of T cells [2, 3]. Since this pioneer work, death receptor activation has been evidenced in a variety of nonimmune cells and shown to induce, besides apoptosis, a number of nonapoptotic events including regulation of cell proliferation and differentiation, chemokine production, inflammatory responses, and tumor-promoting activities [4]. In the nervous system, most death receptors are expressed by neurons as well as by glial cells during development. Nevertheless, while activation of Fas or TNFR induces death of embryonic nervous cells in vitro [5–7], there is still little evidence about their implication in developmental cell death. On the contrary, a growing body of data has demonstrated the involvement of death receptors in neurodegenerative diseases. Depending on models and experimental conditions, studies have confirmed the proapoptotic effects resulting from the activation of death receptors in Alzheimer’s disease [8, 9] or in Parkinson’s disease [10] but have also pointed out their nonapoptotic functions in cell protection in Parkinson’s disease [11, 12]. Probably the strongest evidence for the involvement of death receptors in neurodegenerative diseases comes from studies on amyotrophic lateral sclerosis (ALS). ALS is a
References
[1]
A. Ashkenazi, “Targeting death and decoy receptors of the tumour-necrosis factor superfamily,” Nature Reviews Cancer, vol. 2, no. 6, pp. 420–430, 2002.
[2]
S. Yonehara, A. Ishii, and M. Yonehara, “A cell-killing monoclonal antibody (anti-Fas) to a cell surface antigen co-downregulated with the receptor of tumor necrosis factor,” Journal of Experimental Medicine, vol. 169, no. 5, pp. 1747–1756, 1989.
[3]
B. C. Trauth, C. Klas, A. M. J. Peters et al., “Monoclonal antibody-mediated tumor regression by induction of apoptosis,” Science, vol. 245, no. 4915, pp. 301–305, 1989.
[4]
M. E. Peter, R. C. Budd, J. Desbarats et al., “The CD95 receptor: apoptosis revisited,” Cell, vol. 129, no. 3, pp. 447–450, 2007.
[5]
J. Aebischer, R. Sturny, D. Andrieu et al., “Necdin protects embryonic motoneurons from programmed cell death,” PLoS ONE, vol. 6, no. 9, Article ID e23764, 2011.
[6]
C. Raoul, C. E. Henderson, and B. Pettmann, “Programmed cell death of embryonic motoneurons triggered through the Fas death receptor,” Journal of Cell Biology, vol. 147, no. 5, pp. 1049–1062, 1999.
[7]
G. Ugolini, C. Raoul, A. Ferri et al., “Fas/tumor necrosis factor receptor death signaling is required for axotomy-induced death of motoneurons in vivo,” The Journal of Neuroscience, vol. 23, no. 24, pp. 8526–8531, 2003.
[8]
P. He, Z. Zhong, K. Lindholm et al., “Deletion of tumor necrosis factor death receptor inhibits amyloid β generation and prevents learning and memory deficits in Alzheimer's mice,” Journal of Cell Biology, vol. 178, no. 5, pp. 829–841, 2007.
[9]
M. Yamamoto, T. Kiyota, M. Horiba et al., “Interferon-γ and tumor necrosis factor-α regulate amyloid-β plaque deposition and β-secretase expression in Swedish mutant APP transgenic mice,” American Journal of Pathology, vol. 170, no. 2, pp. 680–692, 2007.
[10]
S. Hayley, S. J. Crocker, P. D. Smith et al., “Regulation of dopaminergic loss by Fas in a 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson's disease,” The Journal of Neuroscience, vol. 24, no. 8, pp. 2045–2053, 2004.
[11]
A. M. Landau, K. C. Luk, M. Jones et al., “Defective Fas expression exacerbates neurotoxicity in a model of Parkinson's disease,” Journal of Experimental Medicine, vol. 202, no. 5, pp. 575–581, 2005.
[12]
J. Desbarats, R. B. Birge, M. Mimouni-Rongy, D. E. Weinstein, J. Palerme, and M. K. Newell, “Fas engagement induces neurite growth through ERK activation and p35 upregulation,” Nature Cell Biology, vol. 5, no. 2, pp. 118–125, 2003.
[13]
D. R. Rosen, T. Siddique, D. Patterson et al., “Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis,” Nature, vol. 362, no. 6415, pp. 59–62, 1993.
[14]
K. C. Kanning, A. Kaplan, and C. E. Henderson, “Motor neuron diversity in development and disease,” Annual Review of Neuroscience, vol. 33, pp. 409–440, 2010.
[15]
L. Wang, K. Sharma, H. Deng et al., “Restricted expression of mutant SOD1 in spinal motor neurons and interneurons induces motor neuron pathology,” Neurobiology of Disease, vol. 29, no. 3, pp. 400–408, 2008.
[16]
H. Ilieva, M. Polymenidou, and D. W. Cleveland, “Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond,” Journal of Cell Biology, vol. 187, no. 6, pp. 761–772, 2009.
[17]
L. Wang, D. H. Gutmann, and R. P. Roos, “Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice,” Human Molecular Genetics, vol. 20, no. 2, pp. 286–293, 2011.
[18]
I. N. Lavrik and P. H. Krammer, “Regulation of CD95/Fas signaling at the DISC,” Cell Death and Differentiation, vol. 19, no. 1, pp. 36–41, 2012.
[19]
C. Scaffidi, S. Fulda, A. Srinivasan et al., “Two CD95 (APO-1/Fas) signaling pathways,” The EMBO Journal, vol. 17, no. 6, pp. 1675–1687, 1998.
[20]
H. Y. Chang, H. Nishitoh, X. Yang, H. Ichijo, and D. Baltimore, “Activation of Apoptosis signal-regulating kinase 1 (ASK1) by the adapter protein Daxx,” Science, vol. 281, no. 5384, pp. 1860–1863, 1998.
[21]
A. Paul, S. Wilson, C. M. Belham et al., “Stress-activated protein kinases: activation, regulation and function,” Cellular Signalling, vol. 9, no. 6, pp. 403–410, 1997.
[22]
X. Yang, R. Khosravi-Far, H. Y. Chang, and D. Baltimore, “Daxx, a novel fas-binding protein that activates JNK and apoptosis,” Cell, vol. 89, no. 7, pp. 1067–1076, 1997.
[23]
C. Raoul, B. Pettmann, and C. E. Henderson, “Active killing of neurons during development and following stress: a role for p75(NTR) and Fas?” Current Opinion in Neurobiology, vol. 10, no. 1, pp. 111–117, 2000.
[24]
D. W. Ethell and L. A. Buhler, “Fas ligand-mediated apoptosis in degenerative disorders of the brain,” Journal of Clinical Immunology, vol. 23, no. 6, pp. 439–446, 2003.
[25]
G. Haase, B. Pettmann, C. Raoul, and C. E. Henderson, “Signaling by death receptors in the nervous system,” Current Opinion in Neurobiology, vol. 18, no. 3, pp. 284–291, 2008.
[26]
C. Park, K. Sakamaki, O. Tachibana, T. Yamashima, J. Yamashita, and S. Yonehara, “Expression of Fas antigen in the normal mouse brain,” Biochemical and Biophysical Research Communications, vol. 252, no. 3, pp. 623–628, 1998.
[27]
C. Raoul, E. Buhler, C. Sadeghi et al., “Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 15, pp. 6007–6012, 2006.
[28]
C. Zuliani, S. Kleber, S. Klussmann et al., “Control of neuronal branching by the death receptor CD95 (Fas/Apo-1),” Cell Death and Differentiation, vol. 13, no. 1, pp. 31–40, 2006.
[29]
C. Raoul, A. G. Estévez, H. Nishimune et al., “Motoneuron death triggered by a specific pathway downstream of fas: potentiation by ALS-linked SOD1 mutations,” Neuron, vol. 35, no. 6, pp. 1067–1083, 2002.
[30]
M. C. Franco, Y. Ye, C. A. Refakis, et al., “Nitration of Hsp90 induces cell death,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, pp. E1102–E1111, 2013.
[31]
N. Bernard-Marissal, A. Moumen, C. Sunyach et al., “Reduced calreticulin levels link endoplasmic reticulum stress and fas-triggered cell death in motoneurons vulnerable to ALS,” The Journal of Neuroscience, vol. 32, no. 14, pp. 4901–4912, 2012.
[32]
L. Duplan, N. Bernard, W. Casseron et al., “Collapsin response mediator protein 4a (CRMP4a) is upregulated in motoneurons of mutant SOD1 mice and can trigger motoneuron axonal degeneration and cell death,” The Journal of Neuroscience, vol. 30, no. 2, pp. 785–796, 2010.
[33]
C. Bendotti, C. Atzori, R. Piva et al., “Activated p38MAPK is a novel component of the intracellular inclusions found in human amyotrophic lateral sclerosis and mutant SOD1 transgenic mice,” Journal of Neuropathology and Experimental Neurology, vol. 63, no. 2, pp. 113–119, 2004.
[34]
M. V. Catania, E. Aronica, B. Yankaya, and D. Troost, “Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord,” The Journal of Neuroscience, vol. 21, no. 11, article RC148, 2001.
[35]
S. S. Holasek, T. M. Wengenack, K. K. Kandimalla et al., “Activation of the stress-activated MAP kinase, p38, but not JNK in cortical motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in transgenic mice,” Brain Research, vol. 1045, no. 1-2, pp. 185–198, 2005.
[36]
R. K. Phul, P. J. Shaw, P. G. Ince, and M. E. Smith, “Expression of nitric oxide synthase isoforms in spinal cord in amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis, vol. 1, no. 4, pp. 259–267, 2000.
[37]
S. Ranganathan, E. Williams, P. Ganchev et al., “Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 95, no. 5, pp. 1461–1471, 2005.
[38]
P. Veglianese, D. Lo Coco, M. Bao Cutrona et al., “Activation of the p38MAPK cascade is associated with upregulation of TNF alpha receptors in the spinal motor neurons of mouse models of familial ALS,” Molecular and Cellular Neuroscience, vol. 31, no. 2, pp. 218–231, 2006.
[39]
T. M. Wengenack, S. S. Holasek, C. M. Montano, D. Gregor, G. L. Curran, and J. F. Poduslo, “Activation of programmed cell death markers in ventral horn motor neurons during early presymptomatic stages of amyotrophic lateral sclerosis in a transgenic mouse model,” Brain Research, vol. 1027, no. 1-2, pp. 73–86, 2004.
[40]
S. W. Ahn, J. E. Kim, K. S. Park, et al., “The neuroprotective effect of the GSK-3beta inhibitor and influence on the extrinsic apoptosis in the ALS transgenic mice,” Journal of the Neurological Sciences, vol. 320, pp. 1–5, 2012.
[41]
G. Almer, S. Vukosavic, N. Romero, and S. Przedborski, “Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 72, no. 6, pp. 2415–2425, 1999.
[42]
S. Sasaki, H. Warita, K. Abe, and M. Iwata, “Inducible nitric oxide synthase (iNOS) and nitrotyrosine immunoreactivity in the spinal cords of transgenic mice with a G93A mutant SOD1 gene,” Journal of Neuropathology and Experimental Neurology, vol. 60, no. 9, pp. 839–846, 2001.
[43]
S. Sasaki, N. Shibata, T. Komori, and M. Iwata, “iNOS and nitrotyrosine immunoreactivity in amyotrophic lateral sclerosis,” Neuroscience Letters, vol. 291, no. 1, pp. 44–48, 2000.
[44]
A. M. Haidet-Phillips, M. E. Hester, C. J. Miranda et al., “Astrocytes from familial and sporadic ALS patients are toxic to motor neurons,” Nature Biotechnology, vol. 29, no. 9, pp. 824–828, 2011.
[45]
M. Nagai, D. B. Re, T. Nagata et al., “Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons,” Nature Neuroscience, vol. 10, no. 5, pp. 615–622, 2007.
[46]
L. H. Barbeito, M. Pehar, P. Cassina et al., “A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis,” Brain Research Reviews, vol. 47, no. 1–3, pp. 263–274, 2004.
[47]
Q. Xiao, W. Zhao, D. R. Beers et al., “Mutant SOD1G93A microglia are more neurotoxic relative to wild-type microglia,” Journal of Neurochemistry, vol. 102, no. 6, pp. 2008–2019, 2007.
[48]
J. Ciesielski-Treska, G. Ulrich, S. Chasserot-Golaz et al., “Mechanisms underlying neuronal death induced by chromogranin A-activated microglia,” The Journal of Biological Chemistry, vol. 276, no. 16, pp. 13113–13120, 2001.
[49]
S. Terrazzino, A. Bauleo, A. Baldan, and A. Leon, “Peripheral LPS administrations up-regulate Fas and FasL on brain microglial cells: a brain protective or pathogenic event?” Journal of Neuroimmunology, vol. 124, no. 1-2, pp. 45–53, 2002.
[50]
I. S. Sengun and S. H. Appel, “Serum anti-Fas antibody levels in amyotrophic lateral sclerosis,” Journal of Neuroimmunology, vol. 142, no. 1-2, pp. 137–140, 2003.
[51]
F. H. Yi, C. Lautrette, C. Vermot-Desroches et al., “In vitro induction of neuronal apoptosis by anti-Fas antibody-containing sera from amyotrophic lateral sclerosis patients,” Journal of Neuroimmunology, vol. 109, no. 2, pp. 211–220, 2000.
[52]
I. M. Chiu, A. Chen, Y. Zheng et al., “T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 46, pp. 17913–17918, 2008.
[53]
R. S. Liblau, D. Gonzalez-Dunia, H. Wiendl, and F. Zipp, “Neurons as targets for T cells in the nervous system,” Trends in Neurosciences, vol. 36, no. 6, pp. 315–324, 2013.
[54]
H. Shao, Y. He, K. C. Li, and X. Zhou, “A system mathematical model of a cell-cell communication network in amyotrophic lateral sclerosis,” Molecular BioSystems, vol. 9, pp. 398–406, 2013.
[55]
S. Petri, M. Kiaei, E. Wille, N. Y. Calingasan, and M. F. Beal, “Loss of Fas ligand-function improves survival in G93A-transgenic ALS mice,” Journal of the Neurological Sciences, vol. 251, no. 1-2, pp. 44–49, 2006.
[56]
F. Locatelli, S. Corti, D. Papadimitriou et al., “Fas small interfering RNA reduces motoneuron death in amyotrophic lateral sclerosis mice,” Annals of Neurology, vol. 62, no. 1, pp. 81–92, 2007.
[57]
M. Kiaei, K. Kipiani, N. Y. Calingasan et al., “Matrix metalloproteinase-9 regulates TNF-α and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis,” Experimental Neurology, vol. 205, no. 1, pp. 74–81, 2007.
[58]
M. Dewil, C. Schurmans, S. Starckx, G. Opdenakker, L. van den Bosch, and W. Robberecht, “Role of matrix metalloproteinase-9 in a mouse model for amyotrophic lateral sclerosis,” NeuroReport, vol. 16, no. 4, pp. 321–324, 2005.
[59]
S. Lorenzl, S. Narr, B. Angele et al., “The matrix metalloproteinases inhibitor Ro 26-2853 extends survival in transgenic ALS mice,” Experimental Neurology, vol. 200, no. 1, pp. 166–171, 2006.
[60]
D. N. Mauri, R. Ebner, R. I. Montgomery et al., “LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator,” Immunity, vol. 8, no. 1, pp. 21–30, 1998.
[61]
S. Scheu, J. Alferink, T. P?tzel, W. Barchet, U. Kalinke, and K. Pfeffer, “Targeted disruption of LIGHT causes defects in costimulatory T cell activation and reveals cooperation with lymphotoxin β in mesenteric lymph node genesis,” Journal of Experimental Medicine, vol. 195, no. 12, pp. 1613–1624, 2002.
[62]
K. Tamada, K. Shimozaki, A. I. Chapoval et al., “LIGHT, a TNF-like molecule, costimulates T cell proliferation and is required for dendritic cell-mediated allogeneic T cell response,” Journal of Immunology, vol. 164, no. 8, pp. 4105–4110, 2000.
[63]
B. S. Kwon, K. B. Tan, J. Ni et al., “A newly identified member of the tumor necrosis factor receptor superfamily with a wide tissue distribution and involvement in lymphocyte activation,” The Journal of Biological Chemistry, vol. 272, no. 22, pp. 14272–14276, 1997.
[64]
R. I. Montgomery, M. S. Warner, B. J. Lum, and P. G. Spear, “Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family,” Cell, vol. 87, no. 3, pp. 427–436, 1996.
[65]
M. Chen, T. Hsu, T. Luh, and S. Hsieh, “Overexpression of Bcl-2 enhances LIGHT- and interferon-γ-mediated apoptosis in Hep3BT2 cells,” The Journal of Biological Chemistry, vol. 275, no. 49, pp. 38794–38801, 2000.
[66]
J. Li, F. Shen, D. Wu et al., “Expression level of Bcl-XL critically affects sensitivity of hepatocellular carcinoma cells to LIGHT-enhanced and interferon-gamma-induced apoptosis,” Oncology Reports, vol. 17, no. 5, pp. 1067–1075, 2007.
[67]
I. A. Rooney, K. D. Butrovich, A. A. Glass et al., “The lymphotoxin-β receptor is necessary and sufficient for LIGHT-mediated apoptosis of tumor cells,” The Journal of Biological Chemistry, vol. 275, no. 19, pp. 14307–14315, 2000.
[68]
M. Wu, P. Wang, S. Han, and S. Hsieh, “The cytoplasmic domain of the lymphotoxin-β receptor mediates cell death in HeLa cells,” The Journal of Biological Chemistry, vol. 274, no. 17, pp. 11868–11873, 1999.
[69]
N. Gavaldà, H. Gutierrez, and A. M. Davies, “Developmental regulation of sensory neurite growth by the tumor necrosis factor superfamily member LIGHT,” The Journal of Neuroscience, vol. 29, no. 6, pp. 1599–1607, 2009.
[70]
S. R. Plant, H. A. Iocca, Y. Wang et al., “Lymphotoxin β receptor (LtβR): Dual roles in demyelination and remyelination and successful therapeutic intervention using LtβR-Ig protein,” The Journal of Neuroscience, vol. 27, no. 28, pp. 7429–7437, 2007.
[71]
J. Aebischer, P. Cassina, B. Otsmane et al., “IFNγ triggers a LIGHT-dependent selective death of motoneurons contributing to the non-cell-autonomous effects of mutant SOD1,” Cell Death and Differentiation, vol. 18, no. 5, pp. 754–768, 2011.
[72]
G. N. Babu, A. Kumar, R. Chandra, S. K. Puri, J. Kalita, and U. K. Misra, “Elevated inflammatory markers in a group of amyotrophic lateral sclerosis patients from northern India,” Neurochemical Research, vol. 33, no. 6, pp. 1145–1149, 2008.
[73]
J. S. Henkel, D. R. Beers, S. Wen, et al., “Regulatory T-lymphocytes mediate amyotrophic lateral sclerosis progression and survival,” EMBO Molecular Medicine, vol. 5, pp. 64–79, 2013.
[74]
K. Hensley, J. Fedynyshyn, S. Ferrell et al., “Message and protein-level elevation of tumor necrosis factor α (TNFα) and TNFα-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis,” Neurobiology of Disease, vol. 14, no. 1, pp. 74–80, 2003.
[75]
T. Tateishi, R. Yamasaki, M. Tanaka et al., “CSF chemokine alterations related to the clinical course of amyotrophic lateral sclerosis,” Journal of Neuroimmunology, vol. 222, no. 1-2, pp. 76–81, 2010.
[76]
E. N. Benveniste and D. J. Benos, “TNF-α- and IFN-γ-mediated signal transduction pathways: effects on glial cell gene expression and function,” The FASEB Journal, vol. 9, no. 15, pp. 1577–1584, 1995.
[77]
J. Aebischer, A. Moumen, V. Sazdovitch, D. Seilhean, V. Meininger, and C. Raoul, “Elevated levels of IFNγ and LIGHT in the spinal cord of patients with sporadic amyotrophic lateral sclerosis,” European Journal of Neurology, vol. 19, no. 5, pp. 752–759, 2012.
[78]
S. Brahmachari, Y. K. Fung, and K. Pahan, “Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide,” The Journal of Neuroscience, vol. 26, no. 18, pp. 4930–4939, 2006.
[79]
G. W. Kreutzberg, “Microglia: a sensor for pathological events in the CNS,” Trends in Neurosciences, vol. 19, no. 8, pp. 312–318, 1996.
[80]
B. Badie, J. Schartner, J. Vorpahl, and K. Preston, “Interferon-γ induces apoptosis and augments the expression of Fas and Fas ligand by microglia in vitro,” Experimental Neurology, vol. 162, no. 2, pp. 290–296, 2000.
[81]
L. Cabal-Hierro and P. S. Lazo, “Signal transduction by tumor necrosis factor receptors,” Cellular Signalling, vol. 24, no. 6, pp. 1297–1305, 2012.
[82]
J. L. Elliott, “Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis,” Molecular Brain Research, vol. 95, no. 1-2, pp. 172–178, 2001.
[83]
K. Hensley, R. A. Floyd, B. Gordon, et al., “Temporal patterns of cytokine and apoptosis-related gene expression in spinal cords of the G93A-SOD1 mouse model of amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 82, pp. 365–374, 2002.
[84]
T. Yoshihara, S. Ishigaki, M. Yamamoto et al., “Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 80, no. 1, pp. 158–167, 2002.
[85]
C. Cereda, C. Baiocchi, P. Bongioanni et al., “TNF and sTNFR1/2 plasma levels in ALS patients,” Journal of Neuroimmunology, vol. 194, no. 1-2, pp. 123–131, 2008.
[86]
M. Poloni, D. Facchetti, R. Mai et al., “Circulating levels of tumour necrosis factor-α and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis,” Neuroscience Letters, vol. 287, no. 3, pp. 211–214, 2000.
[87]
G. Gowing, F. Dequen, G. Soucy, and J. Julien, “Absence of tumor necrosis factor-α does not affect motor neuron disease caused by superoxide dismutase 1 mutations,” The Journal of Neuroscience, vol. 26, no. 44, pp. 11397–11402, 2006.
[88]
P. Weydt, E. C. Yuen, B. R. Ransom, and T. M?ller, “Increased cytotoxic potential of microglia from ALS-transgenic mice,” Glia, vol. 48, no. 2, pp. 179–182, 2004.
[89]
G. Gowing, M. Lalancette-Hébert, J. Audet, F. Dequen, and J. Julien, “Macrophage colony stimulating factor (M-CSF) exacerbates ALS disease in a mouse model through altered responses of microglia expressing mutant superoxide dismutase,” Experimental Neurology, vol. 220, no. 2, pp. 267–275, 2009.
[90]
D. Dawbarn and S. J. Allen, “Neurotrophins and neurodegeneration,” Neuropathology and Applied Neurobiology, vol. 29, no. 3, pp. 211–230, 2003.
[91]
P. Ernfors, A. Henschen, L. Olson, and H. Persson, “Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons,” Neuron, vol. 2, no. 6, pp. 1605–1613, 1989.
[92]
V. E. Koliatsos, T. O. Crawford, and D. L. Price, “Axotomy induces nerve growth factor receptor immunoreactivity in spinal motor neurons,” Brain Research, vol. 549, no. 2, pp. 297–304, 1991.
[93]
C. C. Ferri, F. A. Moore, and M. A. Bisby, “Effects of facial nerve injury on mouse motoneurons lacking the p75 low-affinity neurotrophin receptor,” Journal of Neurobiology, vol. 34, pp. 1–9, 1998.
[94]
K. S. Lowry, S. S. Murray, C. A. McLean et al., “A potential role for the p75 low-affinity neurotrophin receptor in spinal motor neuron degeneration in murine and human amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, vol. 2, no. 3, pp. 127–134, 2001.
[95]
J. L. Seeburger, S. Tarras, H. Natter, and J. E. Springer, “Spinal cord motoneurons express p75(NGFR) and p145(trkB) mRNA in amyotrophic lateral sclerosis,” Brain Research, vol. 621, no. 1, pp. 111–115, 1993.
[96]
M. Pehar, P. Cassina, M. R. Vargas et al., “Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 89, no. 2, pp. 464–473, 2004.
[97]
M. Pehar, M. R. Vargas, K. M. Robinson et al., “Mitochondrial superoxide production and nuclear factor erythroid 2-related factor 2 activation in p75 neurotrophin receptor-induced motor neuron apoptosis,” The Journal of Neuroscience, vol. 27, no. 29, pp. 7777–7785, 2007.
[98]
P. Cassina, M. Pehar, M. R. Vargas et al., “Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: implications for amyotrophic lateral sclerosis,” Journal of Neurochemistry, vol. 93, no. 1, pp. 38–46, 2005.
[99]
B. M. Küst, N. Brouwer, I. J. Mantingh, H. W. G. M. Boddeke, and J. C. V. M. Copray, “Reduced p75NTR expression delays disease onset only in female mice of a transgenic model of familial amyotrophic lateral sclerosis,” Amyotrophic Lateral Sclerosis and other Motor Neuron Disorders, vol. 4, no. 2, pp. 100–105, 2003.
[100]
B. J. Turner, I. K. Cheah, K. J. Macfarlane et al., “Antisense peptide nucleic acid-mediated knockdown of the p75 neurotrophin receptor delays motor neuron disease in mutant SOD1 transgenic mice,” Journal of Neurochemistry, vol. 87, no. 3, pp. 752–763, 2003.
[101]
G. S. Ralph, P. A. Radcliffe, D. M. Day et al., “Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model,” Nature Medicine, vol. 11, no. 4, pp. 429–433, 2005.
[102]
C. Raoul, T. Abbas-Terki, J. Bensadoun et al., “Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset and progression in a mouse model of ALS,” Nature Medicine, vol. 11, no. 4, pp. 423–428, 2005.
[103]
R. L. Mosley and H. E. Gendelman, “Control of neuroinflammation as a therapeutic strategy for amyotrophic lateral sclerosis and other neurodegenerative disorders,” Experimental Neurology, vol. 222, no. 1, pp. 1–5, 2010.
[104]
M. Kiaei, S. Petri, K. Kipiani et al., “Thalidomide and lenalidomide extend survival in a transgenic mouse model of amyotrophic lateral sclerosis,” The Journal of Neuroscience, vol. 26, no. 9, pp. 2467–2473, 2006.
[105]
A. Neymotin, S. Petri, N. Y. Calingasan et al., “Lenalidomide (Revlimid) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis,” Experimental Neurology, vol. 220, no. 1, pp. 191–197, 2009.
[106]
T. Meyer, A. Maier, N. Borisow et al., “Thalidomide causes sinus bradycardia in ALS,” Journal of Neurology, vol. 255, no. 4, pp. 587–591, 2008.
[107]
E. W. Stommel, J. A. Cohen, C. E. Fadul et al., “Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: a phase II open label clinical trial,” Amyotrophic Lateral Sclerosis, vol. 10, no. 5-6, pp. 393–404, 2009.
[108]
C. R. Dunston, H. R. Griffiths, P. A. Lambert, S. Staddon, and A. B. Vernallis, “Proteomic analysis of the anti-inflammatory action of minocycline,” Proteomics, vol. 11, no. 1, pp. 42–51, 2011.
[109]
P. H. Gordon, D. H. Moore, R. G. Miller et al., “Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial,” The Lancet Neurology, vol. 6, no. 12, pp. 1045–1053, 2007.
[110]
S. Zhu, I. G. Stavrovskaya, M. Drozda et al., “Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice,” Nature, vol. 417, no. 6884, pp. 74–78, 2002.
[111]
M. E. Cudkowicz, J. M. Shefner, D. A. Schoenfeld et al., “Trial of celecoxib in amyotrophic lateral sclerosis,” Annals of Neurology, vol. 60, no. 1, pp. 22–31, 2006.
[112]
D. B. Drachman, K. Frank, M. Dykes-Hoberg et al., “Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS,” Annals of Neurology, vol. 52, no. 6, pp. 771–778, 2002.
[113]
Y. Dong and E. N. Benveniste, “Immune function of astrocytes,” Glia, vol. 36, no. 2, pp. 180–190, 2001.
[114]
J. S. Henkel, D. R. Beers, W. Zhao, and S. H. Appel, “Microglia in ALS: the good, the bad, and the resting,” Journal of Neuroimmune Pharmacology, vol. 4, no. 4, pp. 389–398, 2009.
[115]
K. Moisse and M. J. Strong, “Innate immunity in amyotrophic lateral sclerosis,” Biochimica et Biophysica Acta, vol. 1762, no. 11-12, pp. 1083–1093, 2006.
[116]
C. K. Glass, K. Saijo, B. Winner, M. C. Marchetto, and F. H. Gage, “Mechanisms underlying inflammation in neurodegeneration,” Cell, vol. 140, no. 6, pp. 918–934, 2010.