全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Neuroprotection by Exendin-4 Is GLP-1 Receptor Specific but DA D3 Receptor Dependent, Causing Altered BrdU Incorporation in Subventricular Zone and Substantia Nigra

DOI: 10.1155/2013/407152

Full-Text   Cite this paper   Add to My Lib

Abstract:

Glucagon-like peptide-1 receptor (GLP-1R) activation by exendin-4 (EX-4) is effective in preclinical models of Parkinson’s disease (PD) and appears to promote neurogenesis even in severely lesioned rats. In the present study, we determined the effects of EX-4 on cellular BrdU incorporation in the rat subventricular zone (SVZ) and substantia nigra (SN). We also determined the specificity of this effect with the GLP-1R antagonist EX-(9-39) as well as the potential role of dopamine (DA) D3 receptors. Rats were administered 6-OHDA and 1 week later given EX-4 alone, with EX-(9-39) or nafadotride (D3 antagonist) and BrdU. Seven days later, rats were challenged with apomorphine to evaluate circling. Extracellular DA was measured using striatal microdialysis and subsequently tissue DA measured. Tyrosine hydroxylase and BrdU were verified using immunohistochemistry. Apomorphine circling was reversed by EX-4 in lesioned rats, an effect reduced by EX-4, while both EX-(9-39) and NAF attenuated this. 6-OHDA decreased extracellular and tissue DA, both reversed by EX-4 but again attenuated by EX-(9-39) or NAF. Analysis of BrdU+ cells in the SVZ revealed increases in 6-OHDA-treated rats which were reversed by EX-4 and antagonised by either EX-(9-39) or NAF, while in the SN the opposite profile was seen. 1. Introduction Evidence suggests that the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (EX-4), used in the treatment of type 2 diabetes mellitus, also displays neuroprotective properties in multiple cellular and in vivo models of neurodegenerative disorders. Evidence of its potential for the treatment of these neuropathologies has been accumulated rapidly [1–5]. The drug appears to be well tolerated and its use in the clinic, albeit for a different indication, obviates many of the obstacles seen with other putative treatments for PD. A key factor with EX-4 is that despite being a relatively large peptide it readily enters the CNS [6]. EX-4 is a potent agonist at mammalian GLP-1Rs and promotes insulin secretion from beta islet cells. Additionally, EX-4 protects beta cells from cytotoxic insults [7] and also promotes their proliferation and neogenesis from precursors [8, 9]. This suggests that similar mechanisms could be responsible for neuronal cell survival in animal models of neurodegenerative disorders in which EX-4 has been shown to be effective. Neuroprotective effects have been shown in vitro to be GLP-1R dependent by the use of the GLP-1R selective antagonist EX-(9-39) and also more recently in GLP-1R knockout mice [5]. A possible mechanism of

References

[1]  G. Bertilsson, C. Patrone, O. Zachrisson et al., “Peptide hormone exendin-4 stimulates subventricular zone neurogenesis in the adult rodent brain and induces recovery in an animal model of Parkinson's disease,” Journal of Neuroscience Research, vol. 86, no. 2, pp. 326–338, 2008.
[2]  A. Harkavyi, A. Abuirmeileh, R. Lever, A. E. Kingsbury, C. S. Biggs, and P. S. Whitton, “Glucagon-like peptide 1 receptor stimulation reverses key deficits in distinct rodent models of Parkinson's disease,” Journal of Neuroinflammation, vol. 5, article 19, 2008.
[3]  A. Harkavyi and P. S. Whitton, “Glucagon-like peptide 1 receptor stimulation as a means of neuroprotection,” British Journal of Pharmacology, vol. 159, no. 3, pp. 495–501, 2010.
[4]  S. Kim, M. Moon, and S. Park, “Exendin-4 protects dopaminergic neurons by inhibition of microglial activation and matrix metalloproteinase-3 expression in an animal model of Parkinson's disease,” Journal of Endocrinology, vol. 202, no. 3, pp. 431–439, 2009.
[5]  Y. Li, T. Perry, M. S. Kindy et al., “GLP-1 receptor stimulation preserves primary cortical and dopaminergic neurons in cellular and rodent models of stroke and Parkinsonism,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 4, pp. 1285–1290, 2009.
[6]  A. J. Kastin and V. Akerstrom, “Entry of exendin-4 into brain is rapid but may be limited at high doses,” International Journal of Obesity, vol. 27, no. 3, pp. 313–318, 2003.
[7]  Y. Li, T. Hansotia, B. Yusta, F. Ris, P. A. Halban, and D. J. Drueker, “Glucagon-like peptide-1 receptor signaling modulates β cell apoptosis,” The Journal of Biological Chemistry, vol. 278, no. 1, pp. 471–478, 2003.
[8]  J. Buteau, S. Foisy, E. Joly, and M. Prentki, “Glucagon-like peptide 1 induces pancreatic β-cell proliferation via transactivation of the epidermal growth factor receptor,” Diabetes, vol. 52, no. 1, pp. 124–132, 2003.
[9]  S. Park, S. M. Hong, and S. R. Sung, “Exendin-4 and exercise promotes β-cell function and mass through IRS2 induction in islets of diabetic rats,” Life Sciences, vol. 82, no. 9-10, pp. 503–511, 2008.
[10]  J. M. Van Kampen and C. B. Eckman, “Dopamine D3 receptor agonist delivery to a model of Parkinson's disease restores the nigrostriatal pathway and improves locomotor behavior,” The Journal of Neuroscience, vol. 26, no. 27, pp. 7272–7280, 2006.
[11]  J. M. Van Kampen, T. Hagg, and H. A. Robertson, “Induction of neurogenesis in the adult rat subventricular zone and neostriatum following dopamine D3 receptor stimulation,” European Journal of Neuroscience, vol. 19, no. 9, pp. 2377–2387, 2004.
[12]  V. Boulougouris, A. Casta?é, and T. W. Robbins, “Dopamine D2/D3 receptor agonist quinpirole impairs spatial reversal learning in rats: investigation of D3 receptor involvement in persistent behavior,” Psychopharmacology, vol. 202, no. 4, pp. 611–620, 2009.
[13]  T. H. C. Cheung, G. Bezzina, C. L. Hampson et al., “Effect of quinpirole on timing behaviour in the free-operant psychophysical procedure: evidence for the involvement of D2 dopamine receptors,” Psychopharmacology, vol. 193, no. 3, pp. 423–436, 2007.
[14]  P. S. Whitton, G. S. Sarna, M. T. O'Connell, and G. Curzon, “The effect of the novel antidepressant tianeptine on the concentration of 5-hydroxytryptamine in rat hippocampal dialysates in vivo,” Neuropharmacology, vol. 30, no. 1, pp. 1–4, 1991.
[15]  N. Vicente-Salar, A. Santana, P. Juan-Pico, et al., “Phenotypic and functional charaterisation of glucagon-positive cells derived from spontaneous differentiation of D3 mouse embrionic stem cells,” Cytotherapy, vol. 15, no. 1, pp. 122–131, 2013.
[16]  F. Satoh, S. A. Beak, C. J. Small et al., “Characterization of human and rat glucagon-like peptide-1 receptors in the neurointermediate lobe: lack of coupling to either stimulation or inhibition of adenylyl cyclase,” Endocrinology, vol. 141, no. 4, pp. 1301–1309, 2000.
[17]  S.-L. C. Jin, V. K. M. Han, J. G. Simmons, A. C. Towle, J. M. Lauder, and P. K. Lund, “Distribution of glucagonlike peptide I (GLP-I), glucagon, and glicentin in the rat brain: an immunocytochemical study,” Journal of Comparative Neurology, vol. 271, no. 4, pp. 519–532, 1988.
[18]  Y. Kim, W.-Z. Wang, I. Comte et al., “Dopamine stimulation of postnatal murine subventricular zone neurogenesis via the D3 receptor,” Journal of Neurochemistry, vol. 114, no. 3, pp. 750–760, 2010.
[19]  J. N. Joyce, S. Presgraves, L. Renish et al., “Neuroprotective effects of the novel D3/D2 receptor agonist and antiparkinson agent, S32504, in vitro against 1-methyl-4- phenylpyridinium (MPP+) and in vivo against 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine (MPTP): a comparison to ropinirole,” Experimental Neurology, vol. 184, no. 1, pp. 393–407, 2003.
[20]  D. W. Anderson, T. Neavin, J. A. Smith, and J. S. Schneider, “Neuroprotective effects of pramipexole in young and aged MPTP-treated mice,” Brain Research, vol. 905, no. 1-2, pp. 44–53, 2001.
[21]  T. Q. Vu, Z. D. Ling, S. Y. Ma et al., “Pramipexole attenuates the dopaminergic cell loss induced by intraventricular 6-hydroxydopamine,” Journal of Neural Transmission, vol. 107, no. 2, pp. 159–176, 2000.
[22]  A. D. Ramirez, S. K.-F. Wong, and F. S. Menniti, “Pramipexole inhibits MPTP toxicity in mice by dopamine D3 receptor dependent and independent mechanisms,” European Journal of Pharmacology, vol. 475, no. 1–3, pp. 29–35, 2003.
[23]  M. J. Porritt, P. E. Batchelor, and D. W. Howells, “Inhibiting BDNF expression by antisense oligonucleotide infusion causes loss of nigral dopaminergic neurons,” Experimental Neurology, vol. 192, no. 1, pp. 226–234, 2005.
[24]  S. P. Presgraves, S. Borwege, M. J. Millan, and J. N. Joyce, “Involvement of dopamine D2/D3 receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-phenylpyridinium in terminally differentiated SH-SY5Y cells,” Experimental Neurology, vol. 190, no. 1, pp. 157–170, 2004.
[25]  V. Coronas, K. Bantubungi, J. Fombonne, S. Krantic, S. N. Schiffmann, and M. Roger, “Dopamine D3 receptor stimulation promotes the proliferation of cells derived from the post-natal subventricular zone,” Journal of Neurochemistry, vol. 91, no. 6, pp. 1292–1301, 2004.
[26]  C. Zhao, W. Deng, and F. H. Gage, “Mechanisms and functional implications of adult neurogenesis,” Cell, vol. 132, no. 4, pp. 645–660, 2008.
[27]  M. Zhao, S. Momma, K. Delfani et al., “Evidence for neurogenesis in the adult mammalian substantia nigra,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 13, pp. 7925–7930, 2003.
[28]  S. A. Baker, K. A. Baker, and T. Hagg, “Dopaminergic nigrostriatal projections regulate neural precursor proliferation in the adult mouse subventricular zone,” European Journal of Neuroscience, vol. 20, no. 2, pp. 575–579, 2004.
[29]  G. U. H?glinger, P. Rizk, M. P. Muriel et al., “Dopamine depletion impairs precursor cell proliferation in Parkinson disease,” Nature Neuroscience, vol. 7, no. 7, pp. 726–735, 2004.
[30]  B. F. Liu, E. J. Gao, X. Z. Zeng et al., “Proliferation of neural precursors in the subventricular zone after chemical lesions of the nigrostriatal pathway in rat brain,” Brain Research, vol. 1106, no. 1, pp. 30–39, 2006.
[31]  P. M. Aponso, R. L. M. Faull, and B. Connor, “Increased progenitor cell proliferation and astrogenesis in the partial progressive 6-hydroxydopamine model of Parkinson's disease,” Neuroscience, vol. 151, no. 4, pp. 1142–1153, 2008.
[32]  H. Frielingsdorf, K. Schwarz, P. Brundin, and P. Mohapel, “No evidence for new dopaminergic neurons in the adult mammalian substantia nigra,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 27, pp. 10177–10182, 2004.
[33]  N. Freundlieb, C. Fran?ois, D. Tandé, W. H. Oertel, E. C. Hirsch, and G. U. H?glinger, “Dopaminergic substantia nigra neurons project topographically organized to the subventricular zone and stimulate precursor cell proliferation in aged primates,” Journal of Neuroscience, vol. 26, no. 8, pp. 2321–2325, 2006.
[34]  I. Aviles-Olmos, J. Dickson, Z. Kefalopoulou, et al., “Exenatide as a disease modifying treatment for Parkinson's disease- proof of concept trial,” The Journal of Clinical Investigation, vol. 123, no. 6, pp. 2730–2736, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133