Green innovative strategy was developed to accomplish silver nanoparticles formation of starch-silver nanoparticles (St-AgNPs) in the powder form. Thus, St-AgNPs were synthesized through concurrent formation of the nanosized particles of both starch and silver. The alkali dissolved starch acts as reducing agent for silver ions and as stabilizing agent for the formed AgNPs. The chemical reduction process occurred in water bath under high-speed homogenizer. After completion of the reaction, the colloidal solution of AgNPs coated with alkali dissolved starch was cooled and precipitated using ethanol. The powder precipitate was collected by centrifugation, then washed, and dried; St-AgNPs powder was characterized using state-of-the-art facilities including UV-vis spectroscopy, Transmission Electron Microscopy (TEM), particle size analyzer (PS), Polydispersity index (PdI), Zeta potential (ZP), XRD, FT-IR, EDX, and TGA. TEM and XRD indicate that the average size of pure AgNPs does not exceed 20?nm with spherical shape and high concentration of AgNPs (30000?ppm). The results obtained from TGA indicates that the higher thermal stability of starch coated AgNPS than that of starch nanoparticles alone. In addition to the data obtained from EDX which reveals the presence of AgNPs and the data obtained from particle size analyzer and zeta potential determination indicate that the good uniformity and the highly stability of St-AgNPs). 1. Introduction A nanoscale metal is defined as a metal that has a structure in the nanometer size range, usually ranging from 1 to 100?nm. Of these metal nanoparticles, silver nanoparticles (AgNPs) have been by far the most important both from scientific and practical points of view by virtue of their potential use in industrial and other applications [1]. Intensive research has been focused on AgNPs due to their unique optical electronic, [2, 3] catalytic, [4–6], and antimicrobial [7–9] properties which are greatly different from bulk substances. Such properties strongly depend on size and shape of AgNPs as well as on their interactions with the stabilizing agent and the surrounding media in addition to the manner of their preparation. Thus, the controllable synthesis of the nanocrystals is a key challenge to achieve their better applied characteristics [10]. AgNPs have been synthesized using various methods. The physicochemical methods (e.g., ultrasound, templates, and milling process [11–13]), as well as “green” synthesis using microorganisms, enzymes, plants, or plant extracts [14–16] are equally effective, but sometimes they
References
[1]
I. O. Sosa, C. Noguez, and R. G. Barrera, “Optical properties of metal nanoparticles with arbitrary shapes,” Journal of Physical Chemistry B, vol. 107, no. 26, pp. 6269–6275, 2003.
[2]
D. Zhai, T. Zhang, J. Guo, X. Fang, and J. Wei, “Water-based ultraviolet curable conductive inkjet ink containing silver nano-colloids for flexible electronics,” Colloids and Surfaces A, vol. 424, pp. 1–9, 2013.
[3]
H. Andersson, A. Rusu, A. Manuilskiy, S. Haller, S. Ay?z, and H.-E. Nilsson, “System of nano-silver inkjet printed memory cards and PC card reader and programmer,” Microelectronics Journal, vol. 42, no. 1, pp. 21–27, 2011.
[4]
V. I. Parvulescu, B. Cojocaru, V. Parvulescu et al., “Sol-gel-entrapped nano silver catalysts-correlation between active silver species and catalytic behavior,” Journal of Catalysis, vol. 272, no. 1, pp. 92–100, 2010.
[5]
S. Shin and J. Song, “Modeling and simulations of the removal of formaldehyde using silver nano-particles attached to granular activated carbon,” Journal of Hazardous Materials, vol. 194, pp. 385–392, 2011.
[6]
G. Yuan, X. Chang, and G. Zhu, “Electrosynthesis and catalytic properties of silver nano/microparticles with different morphologies,” Particuology, vol. 9, no. 6, pp. 644–649, 2011.
[7]
M. E. Yazdanshenas and M. Shateri-Khalilabad, “In situ synthesis of silver nanoparticles on alkali-treated cotton fabrics,” Journal of Industrial Textiles, vol. 42, no. 4, pp. 459–474, 2013.
[8]
D. Breitwieser, M. M. Moghaddam, S. Spirk, et al., “In situ preparation of silver nanocomposites on cellulosic fibers-Microwave versus conventional heating,” Carbohydrate Polymers, vol. 94, no. 1, pp. 677–686, 2013.
[9]
A. Hebeish, M. E. El-Naggar, M. M. G. Fouda, M. A. Ramadan, S. S. Al-Deyab, and M. H. El-Rafie, “Highly effective antibacterial textiles containing green synthesized silver nanoparticles,” Carbohydrate Polymers, vol. 86, no. 2, pp. 936–940, 2011.
[10]
A.-T. Le, P. T. Huy, P. D. Tam et al., “Green synthesis of finely-dispersed highly bactericidal silver nanoparticles via modified Tollens technique,” Current Applied Physics, vol. 10, no. 3, pp. 910–916, 2010.
[11]
M. Zheng, Z.-S. Wang, and Y.-W. Zhu, “Preparation of silver nanoparticle via active template under ultrasonic,” Transactions of Nonferrous Metals Society of China, vol. 16, no. 6, pp. 1348–1352, 2006.
[12]
G. R. Khayati and K. Janghorban, “Thermodynamic approach to synthesis of silver nanocrystalline by mechanical milling silver oxide,” Transactions of Nonferrous Metals Society of China, vol. 23, no. 2, pp. 543–547, 2013.
[13]
G. R. Khayati and K. Janghorban, “The nanostructure evolution of Ag powder synthesized by high energy ball milling,” Advanced Powder Technology, vol. 23, no. 3, pp. 393–397, 2012.
[14]
P. Mohanpuria, N. K. Rana, and S. K. Yadav, “Biosynthesis of nanoparticles: technological concepts and future applications,” Journal of Nanoparticle Research, vol. 10, no. 3, pp. 507–517, 2008.
[15]
U. B. Jagtap and V. A. Bapat, “Green synthesis of silver nanoparticles using Artocarpus heterophyllus Lam. seed extract and its antibacterial activity,” Industrial Crops and Products, vol. 46, pp. 132–137, 2013.
[16]
K. N. Thakkar, S. S. Mhatre, and R. Y. Parikh, “Biological synthesis of metallic nanoparticles,” Nanomedicine, vol. 6, no. 2, pp. 257–262, 2010.
[17]
S. Ghosh, S. Patil, M. Ahire, et al., “Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential,” Journal of Nanobiotechnology, vol. 10, no. 1, p. 17, 2012.
[18]
N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, and P. V. Varadarajan, “A novel one-pot “Green” synthesis of stable silver nanoparticles using soluble starch,” Carbohydrate Research, vol. 341, no. 12, pp. 2012–2018, 2006.
[19]
S. Wojtysiak and A. Kudelski, “Influence of oxygen on the process of formation of silver nanoparticles during citrate/borohydride synthesis of silver sols,” Colloids and Surfaces A, vol. 410, pp. 45–51, 2012.
[20]
Z. Yang, H. Qian, H. Chen, and J. N. Anker, “One-pot hydrothermal synthesis of silver nanowires via citrate reduction,” Journal of Colloid and Interface Science, vol. 352, no. 2, pp. 285–291, 2010.
[21]
Y. Gao, P. Jiang, L. Song et al., “Studies on silver nanodecahedrons synthesized by PVP-assisted N,N-dimethylformamide (DMF) reduction,” Journal of Crystal Growth, vol. 289, no. 1, pp. 376–380, 2006.
[22]
R. S. Patil, M. R. Kokate, C. L. Jambhale, S. M. Pawar, S. H. Han, and S. S. Kolekar, “One-pot synthesis of PVA-capped silver nanoparticles their characterization and biomedical application,” Advances in Natural Sciences, vol. 3, Article ID 015013, 7 pages, 2012.
[23]
P. Raveendran, J. Fu, and S. L. Wallen, “Completely “Green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003.
[24]
Y.-K. Twu, Y.-W. Chen, and C.-M. Shih, “Preparation of silver nanoparticles using chitosan suspensions,” Powder Technology, vol. 185, no. 3, pp. 251–257, 2008.
[25]
E. S. Abdel-Halim and S. S. Al-Deyab, “Utilization of hydroxypropyl cellulose for green and efficient synthesis of silver nanoparticles,” Carbohydrate Polymers, vol. 86, no. 4, pp. 1615–1622, 2011.
[26]
M. H. El-Rafie, M. E. El-Naggar, M. A. Ramadan, M. M. G. Fouda, S. S. Al-Deyab, and A. Hebeish, “Environmental synthesis of silver nanoparticles using hydroxypropyl starch and their characterization,” Carbohydrate Polymers, vol. 86, no. 2, pp. 630–635, 2011.
[27]
P. Kouvaris, A. Delimitis, V. Zaspalis, D. Papadopoulos, S. A. Tsipas, and N. Michailidis, “Green synthesis and characterization of silver nanoparticles produced using Arbutus Unedo leaf extract,” Materials Letters, vol. 76, pp. 18–20, 2012.
[28]
J. Eastman, “Stability of charge stabilized colloids,” in Colloid Science: Principles, Methods and Applications, T. Cosgrove, Ed., p. 54, Blackwell UK, 2005.
[29]
O. Choi and Z. Hu, “Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria,” Environmental Science and Technology, vol. 42, no. 12, pp. 4583–4588, 2008.
[30]
S. Pandey, G. K. Goswami, and K. K. Nanda, “Green synthesis of biopolymer-silver nanoparticle nanocomposite: an optical sensor for ammonia detection,” International Journal of Biological Macromolecules, vol. 51, no. 4, pp. 583–589, 2012.