全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Antimicrobial Activity of Carbon Nanoparticles Isolated from Natural Sources against Pathogenic Gram-Negative and Gram-Positive Bacteria

DOI: 10.1155/2013/457865

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper describes the isolation of carbon nanoparticles (CNPs) from kitchen soot, characterization of the CNPs by UV/visible spectroscopy, SEM and XRD, and their antimicrobial action. The antibacterial activity of the isolated carbon nanoparticles was tested against various pathogenic bacterial strains such as Gram-negative Proteus refrigere and Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus and Streptococcus haemolyticus. The inhibition zones were measured, and it was found that the carbon nanoparticles isolated from natural sources are active against these Gram-negative and Gram-positive bacterial strains. 1. Introduction Carbon is one of the most abundant elements in nature. Carbonbased nanomaterials have attracted great interest in recent decades. A broad range of carbon nanostructures have been prepared, such as carbon nanotubes, fullerenes, nanofibers, nanodiamond, carbon nanoonions, and other carbonaceous nanomaterials. Carbon nanoparticles have excellent applications because of their unique chemical and physical properties. CNPs can result in a reduction in material weight and in the obtaining of materials with higher impact strength, high surface area per unit volume, electrical conductivity, optical properties, thermal stability, flame resistance, and dimensional stability [1, 2]. Potential newly found application of carbon nanoparticles occurs in nanoscience nanotechnology in such diverse areas as protective coatings, antimicrobial agents, electronic and optical devices, microsensors, and pollution prevention materials. In biological science carbon based nanomaterials have been utilised as excellent platforms for facilitating biochemical reactions and processes, such as sensitive recognition of antibodies, sequencing of nucleic acids, bioseparation, and biocatalysis [3, 4]. Due to the emergence of infectious diseases caused by different pathogenic microbes the pharmaceutical companies and the researchers are searching for new antimicrobial agents. Some of antimicrobial agents are extremely irritant and toxic to humans. Thus, the formulation of new effective, resistance-free, low-cost, and natural origin antimicrobial agents is of great interest [4–9]. An antibacterial drug in medication is used to treat bacterial infections. In the present scenario nanoscale materials such as CNPs have emerged up as novel antimicrobial agents owing to their high surface area to volume ratio and its unique chemical and physical properties [10, 11]. The integration of nanotechnology and microbiology leads to possible advance in the

References

[1]  L. Han, D. Ghosh, W. Chen, S. Pradhan, X. Chang, and S. Chen, “Nanosized carbon particles from natural gas soot,” Chemistry of Materials, vol. 21, no. 13, pp. 2803–2809, 2009.
[2]  T. Pradeep, NANO: The Essentials, Tata McGraw-Hill Education, New Delhi, India, 2007.
[3]  S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application,” Journal of Physical Chemistry C, vol. 113, no. 43, pp. 18546–18551, 2009.
[4]  H. Chen and M. Roco, Mapping Nanotechnology Innovations and Knowledge, Global and Longitudinal Patent and Literature Analysis Series, Springer, New York, NY, USA, 2009.
[5]  S. V. Kyriacou, W. J. Brownlow, and X. N. Xu, “Using nanoparticle optics assay for direct observation of the function of antimicrobial agents in single live bacterial cells,” Biochemistry, vol. 43, no. 1, pp. 140–147, 2004.
[6]  M. L. Abarca, M. R. Bragulat, G. Castellá, and F. J. Caba?es, “Ochratoxin A production by strains of Aspergillus niger var. niger,” Applied and Environmental Microbiology, vol. 60, no. 7, pp. 2650–2652, 1994.
[7]  E. Schuster, N. Dunn-Coleman, J. Frisvad, and P. van Dijck, “On the safety of Aspergillus niger—a review,” Applied Microbiology and Biotechnology, vol. 59, no. 4-5, pp. 426–435, 2002.
[8]  C. George, S. Kuriakose, B. Prakashkumar, and T. Mathew, “Synthesis, characterisation and antibacterial applications of water-soluble, silver nanoparticle-encapsulated β-cyclodextrin,” Supramolecular Chemistry, vol. 22, no. 9, pp. 511–516, 2010.
[9]  C. George, S. Kuriakose, S. George, and T. Mathew, “Antifungal activity of silver nanoparticle-encapsulated β-cyclodextrin against human opportunistic pathogens,” Supramolecular Chemistry, vol. 23, no. 8, pp. 593–597, 2011.
[10]  R. Muntaha, Study of the nanomaterials and their antimicrobial activities [Ph.D. thesis], Texas Southern University, 2009.
[11]  S. Liu, L. Wei, L. Hao et al., “Sharper and faster “nano darts” kill more bacteria: a study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube,” ACS Nano, vol. 3, no. 12, pp. 3891–3902, 2009.
[12]  G. Jia, H. Wang, L. Yan et al., “Cytotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene,” Environmental Science and Technology, vol. 39, no. 5, pp. 1378–1383, 2005.
[13]  L. Dong, A. Henderson, and C. Field, “Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants,” Journal of Nanotechnology, vol. 2012, Article ID 928924, 7 pages, 2012.
[14]  C. Yang, J. Mamouni, Y. Tang, and L. Yang, “Antimicrobial activity of single-walled carbon nanotubes: length effect,” Langmuir, vol. 26, no. 20, pp. 16013–16019, 2010.
[15]  L. R. Arias and L. Yang, “Inactivation of bacterial pathogens by carbon nanotubes in suspensions,” Langmuir, vol. 25, no. 5, pp. 3003–3012, 2009.
[16]  S. Kang, M. Herzberg, D. F. Rodrigues, and M. Elimelech, “Antibacterial effects of carbon nanotubes: size does matter!,” Langmuir, vol. 24, no. 13, pp. 6409–6413, 2008.
[17]  P. Misra and M. A. Dubinsky, Ultraviolet Spectroscopy and UV Lasers, Marcel Dekker, New York, NY, USA, 2002.
[18]  G. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, and E. Lifshin, Scanning Electron Microscopy and X-Ray Microanalysis, Plenum Press, New York, NY, USA, 1981.
[19]  Laboratory Procedures for Microorganisms, http://www.cabri.org/guidelines/micro-organisms/M203Ap1.html.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133