全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Formation of Germanium Nitride Nanowires on the Surface of Crystalline Germanium

DOI: 10.1155/2013/641734

Full-Text   Cite this paper   Add to My Lib

Abstract:

We report on the growth mechanisms of germanium nitride nanowires on the surface of crystalline Ge annealed in hydrazine vapor at different temperatures. In spite of the presence of water (and hence oxygen precursors) in hydrazine, the pure germanium nitride single crystal nanowires were produced in the temperature range of 480– C. At temperatures below C, the clusters were formed first at the Ge surface, followed by the nucleation and growth of nanowires through the Vapor-Liquid-Solid mechanism. The Vapor-Solid growth mechanism was observed at temperatures exceeding C, and Ge3N4 nanobelts were produced instead of nanowires with circular cross-sections. All nanostructures have the alpha germanium nitride structure; however, at the nucleation stage, the presence of beta Ge3N4 phase was also observed in the roots of nanowires. 1. Introduction Nanowire-based devices are considered nowadays as one of the most promising alternatives to conventional microelectronic facilities, which can promote further shrinking of device sizes and increase their functionality. The unique properties of one-dimensional (1D) nanowires arise due to their low dimensionality and hence by quantum-mechanical properties and surface dominated features. From the technological point of view, they have one more advantage. Due to high aspect ratios, the length of nanowires laies in the micrometer range reaching even millimeter sizes. Such “large” elements can be easily handled and manipulated when building different nanodevices and circuits. Germanium nitride has attracted much attention in recent years due to its unique properties and potential applications in different devices [1–3]. It can be used as a thin film material for the passivation of different semiconductors in metal-insulator-semiconductor devices [2, 4–8], as a buffer layer to grow the crystalline GaN film on Ge [9], material for plasmonic devices [1], effective nonoxide photocatalyst for overall water splitting [10], and stable negative electrode material for Li-ion batteries [11]. A new cubic spinel-structured phase of Ge3N4 (γ-phase) is harder than sapphire and can be used as a hard material [12]. As for the growth of one-dimensional germanium nitride nanostructures, there are only two papers dealing with Ge3N4 nanobelts and nanowires (NWs) [13, 14] produced at C. Earlier, we presented the preliminary results on the growth of nanostructured germanium nitride at significantly lower temperatures [15]. The purpose of this work is to investigate the initial stages of formation, growth mechanisms, structure, and morphology of

References

[1]  S.-L. Zhang, W. Wang, E.-H. Zhang, and W. Xiao, “Half-metallic ferromagnetism in transition-metal doped germanium nitride: a first-principles study,” Physics Letters A, vol. 374, no. 31-32, pp. 3234–3237, 2010.
[2]  M. Yang, S. J. Wang, Y. P. Feng, G. W. Peng, and Y. Y. Sun, “Electronic structure of germanium nitride considered for gate dielectrics,” Journal of Applied Physics, vol. 102, no. 1, Article ID 013507, 6 pages, 2007.
[3]  R. Lieten, S. Degroote, and G. Borghs, United States patent no. 8017509, 2011.
[4]  M. Yang, S. J. Wang, G. W. Peng, R. Q. Wu, and Y. P. Feng, “Ab initio study on intrinsic defect properties of germanium nitride considered for gate dielectric,” Applied Physics Letters, vol. 91, Article ID 132906, 3 pages, 2007.
[5]  R. R. Lieten, S. Degroote, M. Kuijk, and G. Borghs, “Crystalline Ge3N4 on Ge(111),” Applied Physics Letters, vol. 91, no. 22, Article ID 222110, 3 pages, 2007.
[6]  G. Okamoto, K. Kutsuki, T. Hosoi, T. Shimura, and H. Watanabe, “Electrical characteristics of Ge-based metal-insulator-semiconductor devices with Ge3N4 dielectrics formed by plasma nitridation,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 4, pp. 2856–2860, 2011.
[7]  Y. Fukuda, Y. Otani, H. Toyota, and T. Ono, “Trap density of GeNx/Ge interface fabricated by electron-cyclotron-resonance plasma nitridation,” Applied Physics Letters, vol. 99, no. 2, Article ID 022902, 3 pages, 2011.
[8]  Y. Fukuda, H. Okamoto, T. Iwasaki et al., “Thermal improvement and stability of Si3N4/GeNx/p- and n-Ge structures prepared by electron-cyclotron-resonance plasma nitridation and sputtering at room temperature,” Japanese Journal of Applied Physics, vol. 51, Article ID 090204, 3 pages, 2012.
[9]  M. Kumar, M. K. Rajpalke, B. Roul, T. N. Bhat, A. T. Kalghatgi, and S. B. Krupanidhi, “Determination of MBE grown wurtzite GaN/Ge3N4/Ge heterojunctions band offset by X-ray photoelectron spectroscopy,” Physica Status Solidi (B), vol. 249, no. 1, pp. 58–61, 2012.
[10]  K. Maeda, N. Saito, D. Lu, Y. Inoue, and K. Domen, “Photocatalytic properties of RuO2-loaded β-Ge3N4 for overall water splitting,” Journal of Physical Chemistry C, vol. 111, no. 12, pp. 4749–4755, 2007.
[11]  G. Amatucci and N. Pereira, U.S. patent 429/218.1, 2001.
[12]  M. S. Somayazulu, K. Leinenweber, H. Hubert, P. F. McMillan, and G. H. Wolf, Proceedings of 17th AIRAPT Conference: Science and Technology of High Pressure, Universities Press, Hyderabad, India, 2000.
[13]  Y. H. Gao, Y. Bando, and T. Sato, “Nanobelts of the dielectric material Ge3N4,” Applied Physics Letters, vol. 79, no. 27, pp. 4565–4567, 2001.
[14]  T. Xie, Z. Jiang, G. Wu, X. Fang, G. Li, and L. Zhang, “Characterization and growth mechanism of germanium nitride nanowires prepared by an oxide-assisted method,” Journal of Crystal Growth, vol. 283, no. 3-4, pp. 286–290, 2005.
[15]  D. Jishiashvili1, V. Kapaklis, X. Devaux et al., “Germanium nitride nanowires produced by thermal annealing in hydrazine vapor,” Advanced Science Letters, vol. 2, no. 1, pp. 40–44, 2009.
[16]  D. Dirtu, L. Odochian, A. Pui, and I. Humelnicu, “Thermal decomposition of ammonia. N2H4—an intermediate reaction product,” Central European Journal of Chemistry, vol. 4, no. 4, pp. 666–673, 2006.
[17]  G. R. Patzke, R. Kontic, Z. Shiolashvili, N. Makhatadze, and D. Jishiashvili, “Hydrazine-assisted formation of indium phosphide (InP)-based nanowires and core-shell composites,” Materials, vol. 6, pp. 85–100, 2013.
[18]  D. Schmeisser, R. D. Schnell, A. Bogen et al., “Surface oxidation states of germanium,” Surface Science, vol. 172, no. 2, pp. 455–465, 1986.
[19]  S. J. Wang, J. W. Chai, J. S. Pan, and A. C. H. Huan, “Thermal stability and band alignments for Ge3N4 dielectrics on Ge,” Applied Physics Letters, vol. 89, no. 2, Article ID 022105, 3 pages, 2006.
[20]  K. Kutsuki, G. Okamoto, T. Hosoi, T. Shimura, and H. Watanabe, “Characteristics of pure Ge3N4 dielectric layers formed by high-density plasma nitridation,” Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 2415–2419, 2008.
[21]  D. Jishiashvili, Z. Shiolashvili, V. Gobronidze, and I. Nakhutsrishvili, “A study of solid phase reactions at the Ge–GeO2 interface,” in Proceedings of the International Symposium and Exhibition on Advanced Packaging Materials, pp. 112–115, Stone Mountain Park, Ga, USA, 2002.
[22]  G. Xu, Z. Li, J. Baca, and J. Wu, “Probing nucleation mechanism of self-catalyzed inn nanostructures,” Nanoscale Research Letters, vol. 5, no. 1, pp. 7–13, 2010.
[23]  S. N. Mohammad, “Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism,” Nano Letters, vol. 8, no. 5, pp. 1532–1538, 2008.
[24]  R. C. Jaeger, Thermal Oxidation of Silicon. Introduction to Microelectronic Fabrication, Prentice Hall, Upper Saddle River, NJ, USA, 2nd edition, 2002.
[25]  N. Tabet, J. Al-Sadah, and M. Salim, “Growth of oxide layer on germanium (011) substrate under dry and wet atmospheres,” Surface Review and Letters, vol. 6, no. 6, pp. 1053–1060, 1999.
[26]  O. J. Gregory, L. A. Pruitt, E. E. Crisman, C. Roberts, and P. J. Stiles, “Native oxides formed on single-crystal germanium by wet chemical reactions,” Journal of the Electrochemical Society, vol. 135, no. 4, pp. 923–929, 1988.
[27]  A. Mura, I. Hideshima, Z. Liu, T. Hosoi, H. Watanabe, and K. Arima, “Water growth on GeO2/Ge(100) stack and its effect on the electronic properties of GeO2,” The Journal of Physical Chemistry C, vol. 117, no. 1, pp. 165–171, 2013.
[28]  T.-F. Teng, W.-L. Lee, Y.-F. Chang, J.-C. Jiang, J.-H. Wang, and W.-H. Hung, “Adsorption and thermal reactions of H2O and H2S on Ge(100),” Journal of Physical Chemistry C, vol. 114, no. 2, pp. 1019–1027, 2010.
[29]  R. F. Lever and F. Jona, “Epitaxial growth of germanium using water vapor,” Journal of Applied Physics, vol. 34, no. 10, pp. 3139–3140, 1963.
[30]  L. S. Palatnik and I. I. Papirov, Epitaxial Films, Nauka, Moscow, Russia, 1971.
[31]  S. M. Cohen, Y. L. Yang, E. Rouchouze, T. Jin, and M. P. D'Evelyn, “Adsorption and decomposition of hydrides on Ge(100),” Journal of Vacuum Science & Technology A, vol. 10, no. 4, pp. 2166–2166, 1992.
[32]  T. J. Hsu, Ch. Y. Ko, and W. T. Lin, “Water-vapor-enhanced growth of Ge–GeOx core-shell nanowires and Si1?xGexOy nanowires,” Nanotechnology, vol. 18, Article ID 385601, 4 pages, 2007.
[33]  W.-L. Lo, H.-C. Chang, T.-J. Hsu, and W.-T. Lin, “Effects of cu catalyst and water vapor on the growth of Ge–GeOx core-shell nanowires via the carbothermal reduction of GeO2 powders,” Japanese Journal of Applied Physics, vol. 47, no. 4, pp. 3299–3302, 2008.
[34]  E. Sutter, B. Ozturk, and P. Sutter, “Selective growth of Ge nanowires by low-temperature thermal evaporation,” Nanotechnology, vol. 19, no. 43, Article ID 435607, 5 pages, 2008.
[35]  C. J. Sahle, M. Zschintzsch, C. Sternemann et al., “Influence of hydrogen on thermally induced phase separation in GeO/SiO2 multilayers,” Nanotechnology, vol. 22, no. 12, Article ID 125709, 4 pages, 2011.
[36]  S. N. Ruddlesden and P. Popper, “On the crystal structure of the nitrides of silicon and germanium,” Acta Crystallographica, vol. 11, pp. 465–468, 1958.
[37]  J. W. Mullin, Crystallization, Reed Educational and Professional Publishing Ltd, Woburn, Mass, USA, 4th edition, 2001.
[38]  B. Molina and L. E. Sansores, “Electronic structures of Ge3N4—possible structures,” The International Journal of Quantum Chemistry, vol. 80, pp. 249–257, 2000.
[39]  Y. Ming, Surface passivation and high-k dielectrics integration of Ge-based FETs: first-principles calculations and in situ characterizations [Ph.D. thesis], National University of Singapore, 2009.
[40]  W. Yang, Z. Xie, H. Miao, L. Zhang, H. Ji, and L. An, “Synthesis of single-crystalline silicon nitride nanobelts via catalyst-assisted pyrolysis of a polysilazane,” Journal of the American Ceramic Society, vol. 88, no. 2, pp. 466–469, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133