Structural, Nanomechanical, and Field Emission Properties of Amorphous Carbon Films Having Embedded Nanocrystallites Deposited by Filtered Anodic Jet Carbon Arc Technique
This paper reports the effect of substrate bias on the structural, nanomechanical, and field emission properties of amorphous carbon films having embedded nanocrystallites (a-C:nc films) deposited by filtered anodic jet carbon arc technique. X-ray diffraction results exhibit predominantly an amorphous nature of the films. High-resolution transmission electron microscope images showed the amorphous nature of the films with nanocrystallites embedded in the amorphous matrix. Ultrafine nanograined microstructures with average grain size between 20 and 30?nm are observed throughout the film with a majority of the grains of single crystallites. A strong influence of substrate bias has been observed on the structural, nanomechanical, and field emission properties. Maximum nanohardness (H) of 58.3?GPa, elastic modulus (E) of 426.2?GPa, and H/E of 0.136 have been observed in a-C:nc films deposited at ?60?V substrate bias which showed 82.6% sp3 content. 1. Introduction Amorphous carbon films have been center of attention for a variety of applications due to their chemical inertness, high optical transparency in the visible and near infrared, good adhesion to different substrates, low surface roughness, and good electrical, mechanical, and field emission properties [1–10]. The a-C films have been deposited by various techniques such as filtered cathodic vacuum arc (FCVA) [11–15], pulsed laser deposition (PLD) [16], sputtering, and electron cyclotron resonance (ECR) [17]. Compared to other deposition techniques, FCVA process offers the unique opportunity of growing different forms of carbon ranging from diamond-like to graphite-like and various intermediate materials such as tetrahedral amorphous carbon (ta-C), hydrogen and nitrogen incorporated ta-C (ta-C: H, ta-C: N), nanoclusters, nanocomposites, and nanotubes. The properties of carbon films mainly depend on the process parameters such as substrate bias, system geometry, pressure, arc current, and arc voltage and the environmental conditions during the growth of the films. There are established theoretical [18] and experimental [19] methods for the formation of different carbon nanostructures such as nanotube and fullerene by arc discharge. Amaratunga et al. [19–21] reported the deposition of hard and highly elastic carbon films which consist of graphitic sp2 bonding using a graphite cathode with localized high pressure of helium or nitrogen at the arc spot. Depending upon whether the gas is injected through the cathode or anode, the technique will be termed as cathodic jet carbon arc (CJCA) or anodic jet carbon
References
[1]
J. Robertson, “Diamond-like amorphous carbon,” Materials Science and Engineering R, vol. 37, no. 4–6, pp. 129–281, 2002.
[2]
S. R. P. Silva, G. A. J. Amaratunga, and C. P. Constantinou, “Optical properties of amorphous C/diamond thin films,” Journal of Applied Physics, vol. 72, no. 3, pp. 1149–1153, 1992.
[3]
J. Robertson, “Plasma deposition of diamond-like carbon,” Japanese Journal of Applied Physics, vol. 50, Article ID 01AF01, 8 pages, 2011.
[4]
D. S. da Silva, A. D. S. C?rtes, M. H. Oliveira Jr. et al., “Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells,” Journal of Applied Physics, vol. 110, no. 4, Article ID 043510, 2011.
[5]
M. Umeno and S. Adhikary, “Diamond-like carbon thin films by microwave surface-wave plasma CVD aimed for the application of photovoltaic solar cells,” Diamond and Related Materials, vol. 14, no. 11-12, pp. 1973–1979, 2005.
[6]
W. S. Choi, K. Kim, J. Yi, and B. Hong, “Diamond-like carbon protective anti-reflection coating for Si solar cell,” Materials Letters, vol. 62, no. 4-5, pp. 577–580, 2008.
[7]
S. K. Das, M. Patel, and A. J. Bhattacharyya, “Effect of nanostructuring and ex situ amorphous carbon coverage on the lithium storage and insertion kinetics in anatase titania,” ACS Applied Materials & Interfaces, vol. 2, no. 7, pp. 2091–2099, 2010.
[8]
S. Salvatori, G. Mazzeo, G. Conte, M. C. Rossi, and V. Ralchenko, “Polycrystalline diamond position sensitive detector for excimer laser UV radiation,” Diamond and Related Materials, vol. 13, no. 4–8, pp. 948–953, 2004.
[9]
N. S. Xu and S. E. Huq, “Novel cold cathode materials and applications,” Materials Science and Engineering R, vol. 48, no. 2–5, pp. 47–189, 2005.
[10]
O. S. Panwar, N. L. Rupesinghe, and G. A. J. Amaratunga, “Field emission from as grown and nitrogen incorporated tetrahedral amorphous carbon/silicon heterojunctions grown using a pulsed filtered cathodic vacuum arc technique,” Journal of Vacuum Science and Technology B, vol. 26, no. 2, pp. 566–575, 2008.
[11]
X. Xiao, J. Partridge, M. Taylor, and D. McCulloch, “The stress and microstructure of a-C multilayers deposited using a filtered cathodic vacuum arc and periodic substrate bias,” Physica Status Solidi (C), vol. 6, no. 10, pp. 2179–2183, 2009.
[12]
P. J. Fallon, V. S. Veerasamy, C. A. Davis et al., “Properties of filtered-ion-beam-deposited diamondlike carbon as a function of ion energy,” Physical Review B, vol. 48, no. 7, pp. 4777–4782, 1993.
[13]
E. Rismani, S. K. Sinha, H. Yang, and C. S. Bhatia, “Effect of pretreatment of Si interlayer by energetic C+ ions on the improved nanotribological properties of magnetic head overcoat,” Journal of Applied Physics, vol. 111, no. 8, Article ID 084902, 10 pages, 2012.
[14]
O. S. Panwar, M. A. Khan, M. Kumar et al., “Effect of high substrate bias and hydrogen and nitrogen incorporation on filtered cathodic vacuum arc deposited tetrahedral amorphous carbon films,” Thin Solid Films, vol. 516, no. 8, pp. 2331–2340, 2008.
[15]
O. S. Panwar, M. A. Khan, G. Bhagavanarayana, P. N. Dixit, S. Kumar, and C. M. S. Rauthan, “Effect of hydrogen and nitrogen incorporation on the properties of tetrahedral amorphous carbon films grown using S bend filtered cathodic vacuum arc process,” Indian Journal of Pure and Applied Physics, vol. 46, no. 11, pp. 797–805, 2008.
[16]
P. Tian, X. Zhang, and Q. Z. Xue, “Enhanced room-temperature positive magnetoresistance of a-C:Fe film,” Carbon, vol. 45, no. 9, pp. 1764–1768, 2007.
[17]
D. Wan and K. Komvopoulos, “Tetrahedral and trigonal carbon atom hybridization in thin amorphous carbon films synthesized by radio-frequency sputtering,” Journal of Physical Chemistry C, vol. 111, no. 27, pp. 9891–9896, 2007.
[18]
E. G. Gamaly and T. W. Ebbesen, “Mechanism of carbon nanotube formation in the arc discharge,” Physical Review B, vol. 52, no. 3, pp. 2083–2089, 1995.
[19]
G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R. Aharonov, and R. M. Devenish, “Hard elastic carbon thin films from linking of carbon nanoparticles,” Nature, vol. 383, no. 6598, pp. 321–223, 1996.
[20]
M. Chhowalla, R. A. Aharonov, C. J. Kiely, I. Alexandrou, and G. A. J. Amaratunga, “Generation and deposition of fullerene- and nanotube-rich carbon thin films,” Philosophical Magazine Letters, vol. 75, no. 5, pp. 329–335, 1997.
[21]
I. Alexandrou, H.-J. Scheibe, C. J. Kiely, A. J. Papworth, G. A. J. Amaratunga, and B. Schultrich, “Carbon films with an sp2 network structure,” Physical Review B, vol. 60, no. 15, pp. 10903–10907, 1999.
[22]
I. Alexandrou, M. Baxendale, N. L. Rupesinghe, G. A. J. Amaratunga, and C. J. Kiely, “Field emission properties of nanocomposite carbon nitride films,” Journal of Vacuum Science and Technology B, vol. 18, no. 6, pp. 2698–2703, 2000.
[23]
I. Alexandrou, C. J. Kiely, A. J. Papworth, and G. A. J. Amaratunga, “Formation and subsequent inclusion of fullerene-like nanoparticles in nanocomposite carbon thin films,” Carbon, vol. 42, no. 8-9, pp. 1651–1656, 2004.
[24]
P. K. Chu and L. Li, “Characterization of amorphous and nanocrystalline carbon films,” Materials Chemistry and Physics, vol. 96, no. 2-3, pp. 253–277, 2006.
[25]
C. Biswas and Y. H. Lee, “Graphene versus carbon nanotubes in electronic devices,” Advanced Functional Materials, vol. 21, no. 20, pp. 3806–3826, 2011.
[26]
D. Varshney, C. V. Rao, M. J.-F. Guinel, Y. Ishikawa, B. R. Weiner, and G. Morell, “Free standing graphene-diamond hybrid films and their electron emission properties,” Journal of Applied Physics, vol. 110, no. 4, Article ID 044324, 2011.
[27]
C. P. Lungu, C. E. A. Grigorescu, M. I. Rusu et al., “Nanodiamond crystallites embedded in carbon films prepared by thermionic vacuum arc method,” Diamond and Related Materials, vol. 20, no. 7, pp. 1061–1064, 2011.
[28]
Ishpal, O. S. Panwar, A. K. Srivastava et al., “Effect of substrate bias in amorphous carbon films having embedded nanocrystallites,” Surface and Coatings Technology, vol. 206, no. 1, pp. 155–164, 2011.
[29]
G. G. Stoney, “The tension of metallic films deposited by electrolysis,” Proceedings of the Royal Society A, vol. 82, no. 553, pp. 172–175, 1909.
[30]
W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” Journal of Materials Research, vol. 7, no. 6, pp. 1564–1583, 1992.
[31]
P. D. Ownby, X. Yang, and J. Liu, “Calculated X-ray diffraction data for diamond polytypes,” Journal of the American Ceramic Society, vol. 75, no. 7, pp. 1876–1883, 1992.
[32]
H. S. Zhang and K. Komvopoulos, “Direct-current cathodic vacuum arc system with magnetic-field mechanism for plasma stabilization,” Review of Scientific Instruments, vol. 79, Article ID 073905, 7 pages, 2008.
[33]
J. Diaz, G. Paolielli, S. Ferrer, and F. Comin, “Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films,” Physical Review B, vol. 54, no. 11, pp. 8064–8069, 1996.
[34]
G. G. Wang, H. Y. Zhang, H. F. Zhou et al., “Effect of ECR-assisted microwave plasma nitriding treatment on the microstructure characteristics of FCVA deposited ultra-thin ta-C films for high-density magnetic storage applications,” Applied Surface Science, vol. 256, no. 10, pp. 3024–3030, 2010.
[35]
R. McCann, S. S. Roy, P. Papakonstantinou, M. F. Bain, H. S. Gamble, and J. A. McLaughlin, “Chemical bonding modifications of tetrahedral amorphous carbon and nitrogenated tetrahedral amorphous carbon films induced by rapid thermal annealing,” Thin Solid Films, vol. 482, no. 1-2, pp. 34–40, 2005.
[36]
Ishpal, O. S. Panwar, M. Kumar, and S. Kumar, “X-ray photoelectron spectroscopic study of nitrogen incorporated amorphous carbon films embedded with nanoparticles,” Applied Surface Science, vol. 256, no. 24, pp. 7371–7376, 2010.
[37]
N. Wada, P. J. Gaczi, and S. A. Solin, “‘Diamond-like’ 3-fold coordinated amorphous carbon,” Journal of Non-Crystalline Solids, vol. 35-36, no. 1, pp. 543–548, 1980.
[38]
S. R. Salis, D. J. Gardiner, M. Bowden, J. Savage, and D. Rodway, “Monitoring the quality of diamond films using Raman spectra excited at 514.5?nm and 633?nm,” Diamond and Related Materials, vol. 5, no. 6–8, pp. 589–591, 1996.
[39]
A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Physical Review B, vol. 61, no. 20, pp. 14095–14107, 2000.
[40]
S. Neuville and A. Matthews, “A perspective on the optimisation of hard carbon and related coatings for engineering applications,” Thin Solid Films, vol. 515, no. 17, pp. 6619–6653, 2007.
[41]
R. Saha and W. D. Nix, “Effects of the substrate on the determination of thin film mechanical properties by nanoindentation,” Acta Materialia, vol. 50, no. 1, pp. 23–38, 2002.
[42]
X. Chen and J. J. Vlassak, “Numerical study on the measurement of thin film mechanical properties by means of nanoindentation,” Journal of Materials Research, vol. 16, no. 10, pp. 2974–2982, 2001.
[43]
B. J?nsson and S. Hogmark, “Hardness measurements of thin films,” Thin Solid Films, vol. 114, no. 3, pp. 257–269, 1984.
[44]
G. Capote, R. Piroli, P. M. Jardin, A. R. Zanatta, L. G. Jacobsohn, and F. L. Freirer Jr., “Amorphous hydrogenated carbon films deposited by PECVD: influence of the substrate temperature on film growth and microstructure,” Journal of Non-Crystalline Solids, vol. 338–340, pp. 503–508, 2004.
[45]
C. A. Charitidis, “Nanomechanical and nanotribological properties of carbon-based thin films: a review,” International Journal of Refractory Metals and Hard Materials, vol. 28, no. 1, pp. 51–70, 2010.
[46]
Ishpal, O. S. Panwar, M. Kumar, and S. Kumar, “Effect of ambient gaseous environment on the properties of amorphous carbon thin films,” Materials Chemistry and Physics, vol. 125, no. 3, pp. 558–567, 2011.
[47]
J. D. Carey, “Engineering the next generation of large-area displays: prospects and pitfalls,” Philosophical Transactions of the Royal Society A, vol. 361, no. 1813, pp. 2891–2907, 2003.
[48]
R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society A, vol. 119, no. 781, pp. 173–181, 1928.
[49]
B. S. Satyanarayana, A. Hart, W. I. Milne, and J. Robertson, “Field emission from tetrahedral amorphous carbon,” Applied Physics Letters, vol. 71, no. 10, pp. 1430–1432, 1997.
[50]
O. S. Panwar, M. A. Khan, B. S. Satyanarayana et al., “Effect of high substrate bias and hydrogen and nitrogen incorporation on density of states and field-emission threshold in tetrahedral amorphous carbon films,” Journal of Vacuum Science and Technology B, vol. 28, no. 2, pp. 411–422, 2010.
[51]
J. D. Carey, R. D. Forrest, and S. R. P. Silva, “Origin of electric field enhancement in field emission from amorphous carbon thin films,” Applied Physics Letters, vol. 78, no. 16, p. 2339, 2001.
[52]
S. Talapatra, S. Kar, S. K. Pal et al., “Direct growth of aligned carbon nanotubes on bulk metals,” Nature Nanotechnology, vol. 1, no. 2, pp. 112–116, 2006.
[53]
S. Shimada, K. Teii, and M. Nakashima, “Low threshold field emission from nitrogen-incorporated carbon nanowalls,” Diamond and Related Materials, vol. 19, no. 7–9, pp. 956–959, 2010.