全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis of Silver-Doped Zinc Oxide Nanocomposite by Pulse Mode Ultrasonication and Its Characterization Studies

DOI: 10.1155/2013/785064

Full-Text   Cite this paper   Add to My Lib

Abstract:

The synthesis of silver-doped zinc oxide (Ag:ZnO) nanocomposite material was achieved using a simple chemical coprecipitation method, in which 0.2?M zinc chloride and 0.001?M silver nitrate coprecipitated with 25% ammonia solution by pulse mode dispersion using ultrasonicator. The obtained silvery white precipitate was dried overnight at 110°C in hot air oven, and the powder was collected. The resulted Ag:ZnO nanocomposite was structurally and optically characterized using various techniques. The X-ray diffraction (XRD) pattern clearly showed the presence of crystalline Ag:ZnO particles. Further, UV-Vis spectrophotometer and fourier transform infrared spectroscopy (FT-IR) results showed the presence of Ag:ZnO nanocomposite at specific wavelengths. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis confirm that the synthesized Ag:ZnO nanocomposite material was truncated nanorod in shape and has 48 to 226?nm size in diameter. 1. Introduction Zinc oxide (ZnO) is an important industrial material, because it has an inorganic and semiconducting material with inherent properties that share its structure as wurtzite [1]. ZnO nanocomposite has attracted interest because of its optical properties. These particles are transparent to visible light, but they absorb UV-light. ZnO has attracted intensive research effort for its unique properties and versatile applications in transparent electronics, chemical sensors, and spin electronics [2–8]. A variety of metal oxides like zinc oxide, titanium dioxide (TiO2), and silicon dioxide (SiO2) and different techniques such as chemical coprecipitation [9, 10], sol-gel process [11, 12] chemical vapour deposition [13], thermal decomposition [14, 15], hydrothermal synthesis [16, 17], solid-state reaction [18], spray pyrolysis [19], vapour-liquid-solid method [20], and microemulsion precipitation [21–23] have been used so far. Hingorani et al. also reported the synthesis of ZnO nanoparticles (NPs) and it was the first study using reverse microemulsion in the early 1990s [24, 25]. Synthesis process of Ag:ZnO nanocomposite plays a key role in governing size, morphology, and its properties of nanocomposite through dispersion method (pulse mode), using ultrasonication [26]. The main objective of synthesis is to produce particles only in nanorod structure for various toxicity and biological application studies. There are different doping agents like P [27], N [28], As [29], Li [30], Sb [31–34], and Ag [35]. Among these, we have taken Ag as doping agent. Because the nature of Ag ions is simple

References

[1]  Y. K. Mishra, V. S. K. Chakravadhanula, V. Hrkac et al., “Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability,” Journal of Applied Physics, vol. 112, Article ID 064308, 2012.
[2]  K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, “Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor,” Science, vol. 300, no. 5623, pp. 1269–1272, 2003.
[3]  S. Y. Lee, E. S. Shim, H. S. Kang, S. S. Pang, and J. S. Kang, “Fabrication of ZnO thin film diode using laser annealing,” Thin Solid Films, vol. 473, no. 1, pp. 31–34, 2005.
[4]  R. K?nenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Applied Physics Letters, vol. 85, no. 24, pp. 6004–6006, 2004.
[5]  Z. L. Wang, X. Y. Kong, Y. Ding et al., “Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces,” Advanced Functional Materials, vol. 14, no. 10, pp. 943–956, 2004.
[6]  Y. Ushio, M. Miyayama, and H. Yanagida, “Effects of interface states on gas-sensing properties of a CuO/ZnO thin-film heterojunction,” Sensors and Actuators B, vol. 17, no. 3, pp. 221–226, 1994.
[7]  H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” Journal of Physics Condensed Matter, vol. 16, no. 48, pp. S5653–S5660, 2004.
[8]  S. J. Pearton, W. H. Heo, M. Ivill, D. P. Norton, and T. Steiner, “Dilute magnetic semiconducting oxides,” Semiconductor Science and Technology, vol. 19, no. 10, pp. R59–R74, 2004.
[9]  L. Wang and M. Muhammed, “Synthesis of zinc oxide nanoparticles with controlled morphology,” Journal of Materials Chemistry, vol. 9, no. 11, pp. 2871–2878, 1999.
[10]  J. E. Rodríguez-Paéz, A. C. Caballero, M. Villegas, C. Moure, P. Durán, and J. F. Fernández, “Controlled precipitation methods: formation mechanism of ZnO nanoparticles,” Journal of the European Ceramic Society, vol. 21, no. 7, pp. 925–930, 2001.
[11]  V. Khrenov, M. Klapper, M. Koch, and K. Müllen, “Surface functionalized ZnO particles designed for the use in transparent nanocomposites,” Macromolecular Chemistry and Physics, vol. 206, no. 1, pp. 95–101, 2005.
[12]  I. A. Toutorski, T. E. Tkachenko, B. V. Pokidko, N. I. Maliavski, and V. I. Sidorov, “Mechanical properties and structure of zinc-containing latex-silicate composites,” Journal of Sol-Gel Science and Technology, vol. 26, no. 1–3, pp. 505–509, 2003.
[13]  M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD),” Thin Solid Films, vol. 403-404, pp. 485–488, 2002.
[14]  N. Audebrand, J.-P. Auffrédic, and D. Lou?r, “X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor dependent micro structural properties,” Chemistry of Materials, vol. 10, no. 9, pp. 2450–2461, 1998.
[15]  Y. Yang, H. Chen, B. Zhao, and X. Bao, “Size control of ZnO nanoparticles via thermal decomposition of zinc acetate coated on organic additives,” Journal of Crystal Growth, vol. 263, no. 1–4, pp. 447–453, 2004.
[16]  D. Polsongkram, P. Chamninok, S. Pukird et al., “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Physica B, vol. 403, no. 19-20, pp. 3713–3717, 2008.
[17]  C.-H. Lu and C.-H. Yeh, “Influence of hydrothermal conditions on the morphology and particle size of zinc oxide powder,” Ceramics International, vol. 26, no. 4, pp. 351–357, 2000.
[18]  Y. Zhu and Y. Zhou, “Preparation of pure ZnO nanoparticles by a simple solid-state reaction method,” Applied Physics A, vol. 92, no. 2, pp. 275–278, 2008.
[19]  T. Tani, L. M?dler, and S. E. Pratsinis, “Homogeneous ZnO nanoparticles by flame spray pyrolysis,” Journal of Nanoparticle Research, vol. 4, no. 4, pp. 337–343, 2002.
[20]  S. Jebril, H. Kuhlmann, S. Müller et al., “Epitactically interpenetrated high quality ZnO nanostructured junctions on microchips grown by the vapor-liquid-solid method,” Crystal Growth and Design, vol. 10, no. 7, pp. 2842–2846, 2010.
[21]  M. Singhal, V. Chhabra, P. Kang, and D. O. Shah, “Synthesis of ZnO nanoparticles for varistor application using Zn-substituted aerosol OT microemulsion,” Materials Research Bulletin, vol. 32, no. 2, pp. 239–247, 1997.
[22]  B. P. Lim, J. Wang, S. C. Ng, C. H. Chew, and L. M. Gan, “A bicontinuous microemulsion route to zinc oxide powder,” Ceramics International, vol. 24, no. 3, pp. 205–209, 1998.
[23]  M. Inoguchi, K. Suzuki, K. Kageyama, H. Takagi, and Y. Sakabe, “Monodispersed and well-crystallized zinc oxide nanoparticles fabricated by microemulsion method,” Journal of the American Ceramic Society, vol. 91, no. 12, pp. 3850–3855, 2008.
[24]  S. Hingorani, V. Pillai, P. Kumar, M. S. Multani, and D. O. Shah, “Microemulsion mediated synthesis of zinc-oxide nanoparticles for varistor studies,” Materials Research Bulletin, vol. 28, no. 12, pp. 1303–1310, 1993.
[25]  S. Hingorani, D. O. Shah, and M. S. Multani, “Effect of process variables on the grain growth and microstructure of ZnO-Bi2O3 varistors and their nanosize ZnO precursors,” Journal of Materials Research, vol. 10, no. 2, pp. 461–467, 1995.
[26]  X. D. Gao, X. M. Li, and W. D. Yu, “Structural and morphological evolution of ZnO cluster film prepared by the ultrasonic irradiation assisted solution route,” Thin Solid Films, vol. 484, no. 1-2, pp. 160–164, 2005.
[27]  K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, “Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant,” Applied Physics Letters, vol. 83, no. 1, pp. 63–65, 2003.
[28]  K. Y. Gao, T. Seyller, L. Ley et al., “Al2O3 prepared by atomic layer deposition as gate dielectric on 6H-SiC(0001),” Applied Physics Letters, vol. 83, no. 9, pp. 1830–1832, 2003.
[29]  D. C. Look, G. M. Renlund, R. H. Burgener II, and J. R. Sizelove, “As-doped p-type ZnO produced by an evaporation/sputtering process,” Applied Physics Letters, vol. 85, no. 22, article 3, pp. 5269–5271, 2004.
[30]  Y. J. Zeng, Z. Z. Ye, W. Z. Xu et al., “Dopant source choice for formation of p -type ZnO: Li acceptor,” Applied Physics Letters, vol. 88, no. 6, Article ID 062107, 2006.
[31]  S. Limpijumnong, S. B. Zhang, S.-H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: the microscopic origin of arsenicor antimony-doped p-type zinc oxide,” Physical Review Letters, vol. 92, no. 15, Article ID 155504, 2004.
[32]  X. Pan, Z. Ye, J. Li et al., “Fabrication of Sb-doped p-type ZnO thin films by pulsed laser deposition,” Applied Surface Science, vol. 253, no. 11, pp. 5067–5069, 2007.
[33]  F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, “High-mobility Sb-doped p-type ZnO by molecular-beam epitaxy,” Applied Physics Letters, vol. 87, no. 15, Article ID 152101, 3 pages, 2005.
[34]  F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, and J. L. Liu, “Photoluminescence study of Sb-doped p -type ZnO films by molecular-beam epitaxy,” Applied Physics Letters, vol. 87, no. 25, Article ID 252102, 3 pages, 2005.
[35]  R. Chauhan, A. Kumar, and R. P. Chaudhary, “Synthesis and characterization of silver doped ZnO nanoparticles,” Archives of Applied Science Research, vol. 2, no. 5, pp. 378–385, 2010.
[36]  O. Lupan, L. Chow, L. K. Ono et al., “Synthesis and characterization of ag- or sb-doped zno nanorods by a facile hydrothermal route,” Journal of Physical Chemistry C, vol. 114, no. 29, pp. 12401–12408, 2010.
[37]  C. X. Mei, J. Yong, G. X. Yong, and Z. X. Wei, “Ag-doped ZnO nanorods synthesized by two-step method,” Chinese Physics B, vol. 11, no. 21, Article ID 116801, 2012.
[38]  M. Mahanti and D. Basak, “Ag-ZnO nanorods having enhanced emission and photocurrent properties,” AIP Conference Proceedings, vol. 1447, pp. 713–714, 2011.
[39]  Y. Zhang and J. Mu, “One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites,” Journal of Colloid and Interface Science, vol. 309, no. 2, pp. 478–484, 2007.
[40]  V. G. Pol, A. Gedanken, and J. Calderon-Moreno, “Deposition of gold nanoparticles on silica spheres: a sonochemical approach,” Chemistry of Materials, vol. 15, no. 5, pp. 1111–1118, 2003.
[41]  K. Singh, S. Kumar, N. K. Verma, and H. S. Bhatti, “Photoluminescence properties of Eu3+-doped Cd1?x Znx S quantum dots,” Journal of Nanoparticle Research, vol. 11, no. 4, pp. 1017–1021, 2009.
[42]  Z. Li, Y. Ding, Y. Xiong, Q. Yang, and Y. Xie, “Room-temperature surface-erosion route to ZnO nanorod arrays and urchin-like assemblies,” Chemistry, vol. 10, no. 22, pp. 5823–5828, 2004.
[43]  U. Pal and P. Santiago, “Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process,” Journal of Physical Chemistry B, vol. 109, no. 32, pp. 15317–15321, 2005.
[44]  Y. Zheng, C. Chen, Y. Zhan et al., “Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property,” Journal of Physical Chemistry C, vol. 112, no. 29, pp. 10773–10777, 2008.
[45]  Y. J. Kwon, K. H. Kim, C. S. Lim, and K. B. Shim, “Characterization of ZnO nanopowders synthesized by the polymerized complex method via an organochemical route,” Journal of Ceramic Processing Research, vol. 3, no. 3, pp. 146–149, 2002.
[46]  R. F. Silva and M. E. D. Zaniquelli, “Morphology of nanometric size particulate aluminium-doped zinc oxide films,” Colloids and Surfaces A, vol. 198–200, pp. 551–558, 2002.
[47]  H. Li, J. Wang, H. Liu et al., “Sol-Gel preparation of transparent zinc oxide films with highly preferential crystal orientation,” Vacuum, vol. 77, no. 1, pp. 57–62, 2004.
[48]  S. Kurien, S. Sebastian, J. Mathew, and K. C. George, “Structural and electrical properties of nano-sized magnesium aluminate,” Indian Journal of Pure and Applied Physics, vol. 42, no. 12, pp. 926–933, 2004.
[49]  B. S. R. Devi, R. Raveendran, and A. V. Vaidyan, “Synthesis and characterization of Mn2+-doped ZnS nanoparticles,” Pramana, vol. 68, no. 4, pp. 679–687, 2007.
[50]  S. Suwanboon, “Structural and optical properties of nanocrystalline ZnO powder from sol-gel method,” ScienceAsia, vol. 34, no. 1, pp. 31–34, 2008.
[51]  A. H. Shah, E. Manikandan, M. Basheer Ahmed, and V. Ganesan, “Enhanced bioactivity of Ag/ZnO nanorods-A comparative antibacterial Study,” Journal of Nanomedicine & Nanotechnology, vol. 4, no. 3, pp. 2–6, 2013.
[52]  D. Sahu, B. S. Acharya, and A. K. Panda, “Role of Ag ions on the structural evolution of nano ZnO clusters synthesized through ultrasonication and their optical properties,” Ultrasonics Sonochemistry, vol. 18, no. 2, pp. 601–607, 2011.
[53]  H. Karami and E. Fakoori, “Synthesis and characterization of ZnO nanorods based on a new gel pyrolysis method,” Journal of Nanomaterials, vol. 2011, Article ID 628203, 11 pages, 2011.
[54]  Y. Ni, X. Cao, G. Wu, G. Hu, Z. Yang, and X. Wei, “Preparation, characterization and property study of zinc oxide nanoparticles via a simple solution-combusting method,” Nanotechnology, vol. 18, no. 15, Article ID 155603, 2007.
[55]  E. A. Meulenkamp, “Synthesis and growth of ZnO nanoparticles,” Journal of Physical Chemistry B, vol. 102, no. 29, pp. 5566–5572, 1998.
[56]  Y. W. Koh, M. Lin, C. K. Tan, Y. L. Foo, and K. P. Loh, “Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat,” Journal of Physical Chemistry B, vol. 108, no. 31, pp. 11419–11425, 2004.
[57]  H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, and D. Que, “Low temperature synthesis of flowerlike zno nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process,” Journal of Physical Chemistry B, vol. 108, no. 13, pp. 3955–3958, 2004.
[58]  S. López-Cuenca, L. A. Pérez Carrillo, M. Rabelero Velasco et al., “High-yield synthesis of zinc oxide nanoparticles from bicontinuous microemulsions,” Journal of Nanomaterials, vol. 2011, Article ID 431382, 6 pages, 2011.
[59]  K. Nejati, Z. Rezvani, and R. Pakizevand, “Synthesis of ZnO nanoparticles and investigation of the ionic template effect on their size and shape,” International Nano Letters, vol. 1, no. 2, pp. 75–81, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133