Silver nanoparticles are applied in nanomedicine from time immemorial and are still used as powerful antibiotic and anti-inflammatory agents. Antibiotics produced by actinomycetes are popular in almost all the therapeutic measures, and this study has proven that these microbes are also helpful in the biosynthesis of silver nanoparticles with good surface and size characteristics. Silver can be synthesized by various chemical methodologies, and most of them have turned to be toxic. This study has been successful in isolating the microbes from polluted environment, and subjecting them to the reduction of silver nanoparticles, characterizing the nanoparticles by UV spectrophotometry and transmission electron microscopy. The nanoparticles produced were tested for their antimicrobial property, and the zone of inhibition was greater than those produced by their chemically synthesized counterparts. Actinomycetes, helpful in bioremediating heavy metals, are useful for the production of metallic nanoparticles. The biosynthesized silver nanoparticles loaded with antibiotics prove to be better in killing the pathogens and have opened up new areas for developing nanobiotechnological research based on microbial applications. 1. Introduction Human activities are greatly altering ecosystems worldwide at unprecedented rates, leading to accelerated loss of biodiversity [1] and environmental pollution. Soil is perhaps the most endangered component of our environment being open to potential contamination by a variety of different pollutants arising from human activities such as nuclear, industrial, and activities agricultural, [2, 3]. There are hundreds of sources of heavy metal pollution, including the coal, natural gas, paper, and chloralkali industries [4]. “Heavy metals” is a general collective term, which applies to the group of metals and metalloids with atomic density greater than 4?g/cm3, or 5 times or more, greater than water [5–7]. Microorganisms in the soil are responsible for nitrogen fixation, assimilation, and degradation of organic residues to release nutrients. Field studies of metal contaminated soils have demonstrated that elevated metal loadings can result in decreased microbial community [8–11]. Actinomycetes populations are relatively lower than other soil microbes and contain a predominance of streptomyces that are tolerant to acid conditions [12]. Classically the nanoparticles are produced by physical and chemical methods [13]. But these methods are costly, toxic, and nonecofriendly. Currently, there is a growing need to use environmentally friendly
References
[1]
P. H. Raven, “Science, sustainability, and the human prospect,” Science, vol. 297, pp. 954–958, 2002.
[2]
O. Morton-Bermea, E. Hernández álvarez, I. Gaso, and N. Segovia, “Heavy metal concentrations in surface soils from Mexico City,” Bulletin of Environmental Contamination and Toxicology, vol. 68, no. 3, pp. 383–388, 2002.
[3]
M. R. Kalantari, M. Shokrzadeh, A. G. Ebadi, C. Mohammadizadeh, M. I. Choudhary, and A.-U. Atta-ur-Rahman, “Soil pollution by heavy metals and remediation (Mazandaran-Iran),” Journal of Applied Sciences, vol. 6, no. 9, pp. 2110–2116, 2006.
[4]
D. G. McDonald and A. F. Grandt, “Limestone- Lime Treatment of Acid Mine Drainage-Full Scale,” EPA Project Summary, EPA-600/S7-81-033, 1981.
[5]
J. O. Nriagu, “A global assessment of natural sources of atmospheric trace metals,” Nature, vol. 338, no. 6210, pp. 47–49, 1989.
[6]
J. R. Garbarino, H. Hayes, D. Roth, R. Antweider, T. I. Brinton, and H. Taylor, Contaminants in the Mississippi River, U. S. Geological Survey Circular 1133, Virginia, Va, USA, 1995.
[7]
S. J. Hawkes, “What is a “Heavy Metal”?” Journal of Chemical Education, vol. 74, no. 11, p. 1374, 1997.
[8]
M. J. Jordan and M. P. Lechevalier, “Effects of zinc smelter emissions on forest soil microflora,” Canadian Journal of Microbiology, vol. 21, no. 11, pp. 1855–1865, 1975.
[9]
P. C. Brookes and S. P. McGrath, “Effects of metal toxicity on the size of the soil microbial biomass,” Journal of Soil Science, vol. 35, no. 2, pp. 341–346, 1984.
[10]
K. Chander and P. C. Brookes, “Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty loam U.K. soil,” Soil Biology and Biochemistry, vol. 23, no. 10, pp. 927–932, 1991.
[11]
A. Konopka, T. Zakharova, M. Bischoff, L. Oliver, C. Nakatsu, and R. F. Turco, “Microbial biomass and activity in lead-contaminated soil,” Applied and Environmental Microbiology, vol. 65, no. 5, pp. 2256–2259, 1999.
[12]
F. L. Davies and S. T. Williams, “Studies on the ecology of actinomycetes in soil. I. The occurrence and distribution of actinomycetes in a pine forest soil,” Soil Biology and Biochemistry, vol. 2, no. 4, pp. 227–238, 1970.
[13]
Z.-J. Jiang, C.-Y. Liu, and L.-W. Sun, “Catalytic properties of silver nanoparticles supported on silica spheres,” Journal of Physical Chemistry B, vol. 109, no. 5, pp. 1730–1735, 2005.
[14]
P. Mukherjee, A. Ahmad, D. Mandal et al., “Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis,” Nano Letters, vol. 1, no. 10, pp. 515–519, 2001.
[15]
I. Sondi and B. Salopek-Sondi, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” Journal of Colloid and Interface Science, vol. 275, no. 1, pp. 177–182, 2004.
[16]
X. Chen and H. J. Schluesener, “Nanosilver: a nanoproduct in medical application,” Toxicology Letters, vol. 176, no. 1, pp. 1–12, 2008.
[17]
M. Buée, P. E. Courty, D. Mignot, and J. Garbaye, “Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community,” Soil Biology and Biochemistry, vol. 39, no. 8, pp. 1947–1955, 2007.
[18]
R. E. Buchanan and N. E. Gibbons, Bergey’s Manual of Determinative Bacteriology, 8th edition, 1974.
[19]
L. Sembiring, Selective isolation and characterisation of streptomycetes associated with the rhizosphere of the tropical legume, Paraserianthes falcataria (L) Nielsen [Ph.D. thesis], University of Newcastle, Tyne, UK, 2003.
[20]
M. George, A. Anjumol, G. George, and A. A. M. Hatha, “Distribution and bioactive potential of soil actinomycetes from different ecological habitats,” Journal of Microbiology Research, vol. 6, no. 10, pp. 2265–2271, 2011.
[21]
P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir, vol. 12, no. 3, pp. 788–800, 1996.
[22]
N. Y. Tsibakhashvili, E. I. Kirkesali, D. T. Pataraya et al., “Microbial synthesis of silver nanoparticles by Streptomyces glaucus and Spirulina platensis,” Advanced Science Letters, vol. 4, no. 11-12, pp. 3408–3417, 2011.
[23]
K. J. Narayana, P. Prabhakar, M. Vijayalakshmi, Y. Venkateswarlu, and P. S. Krishna, “Biological activity of phenylpropionic acid isolated from a terrestrial Streptomycetes,” Polish Journal of Microbiology, vol. 56, no. 3, pp. 191–197, 2007.
[24]
L. S. Singh, I. Baruah, and T. C. Bora, “Actinomycetes of Loktak habitat: isolation and screening for antimicrobial activities,” Biotechnology, vol. 5, no. 2, pp. 217–221, 2006.
[25]
Q. L. Feng, J. Wa, G. Q. Chen, K. Z. Cui, T. M. Kim, and J. O. Kim, “Antimicrobial activity of silver nanoparticles against bacterial species,” Journal of Biomedical Materials Research B, no. 52, pp. 662–668, 2003.