Optical tracking methods are increasingly employed to characterize the size of nanoparticles in suspensions. However, the sufficient separation of different particle populations in polydisperse suspension is still difficult. In this work, Nanosight measurements of well-defined particle populations and Monte-Carlo simulations showed that the analysis of polydisperse particle dispersion could be improved with mathematical methods. Logarithmic transform of measured hydrodynamic diameters led to improved comparability between different modal values of multimodal size distributions. Furthermore, an automatic cluster analysis of transformed particle diameters could uncover otherwise hidden particle populations. In summary, the combination of logarithmically transformed hydrodynamic particle diameters with cluster analysis markedly improved the interpretability of multimodal particle size distributions as delivered by particle tracking measurements. 1. Introduction It has often been shown that the size of nanoparticles determines, among other factors, its biologic or even toxic effects [1]. However, the exact description of a nanoparticle suspension is a challenging issue, for example, during toxicological in vitro testing of nanoparticles [2–4]. During the past 5 years, the Nanoparticle Tracking Analysis (NTA) became increasingly important in nanotoxicology to describe the size distribution of nanoparticle suspensions [5]. As a basic principle, the Brownian motion of laser illuminated NPs is captured by a CCD camera mounted on a conventional light microscope and particle trajectories are tracked by image processing software. Particle size distribution is then obtained via the Stokes-Einstein relation [6]. The variance of the size distribution depends on duration of the observed particle tracks [7] and, in particular, on the mean particle size. Thus, a broadening of the size distribution is to be expected if mean diameter increases. Owing to this broadening effect the proportions of different particle populations are hard to assess by the modal values of a polydisperse suspension. From this consideration it, appears intuitively clear that the larger the broadening effect is, the more difficult it becomes to separate populations of particles with a small difference in size. The purpose of this paper is to demonstrate these features by means of Monte-Carlo simulations of polydisperse suspensions. We furthermore will show methods useful for the analysis and improved interpretation of polydisperse particle size distributions (PSDs). Therefore, different
References
[1]
J. G. Teeguarden, P. M. Hinderliter, G. Orr, B. D. Thrall, and J. G. Pounds, “Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments,” Toxicological Sciences, vol. 95, no. 2, pp. 300–312, 2007.
[2]
C. Buzea, I. I. Pacheco, and K. Robbie, “Nanomaterials and nanoparticles: sources and toxicity,” Biointerphases, vol. 2, no. 4, pp. MR17–MR71, 2007.
[3]
Z. Yang, Z. W. Liu, R. P. Allaker et al., “A review of nanoparticle functionality and toxicity on the central nervous system,” Journal of the Royal Society Interface, vol. 7, no. 4, pp. S411–S422, 2010.
[4]
V. Stone, B. Nowack, A. Baun et al., “Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation,” Science of the Total Environment, vol. 408, no. 7, pp. 1745–1754, 2010.
[5]
I. Montes-Burgos, D. Walczyk, P. Hole, J. Smith, I. Lynch, and K. Dawson, “Characterisation of nanoparticle size and state prior to nanotoxicological studies,” Journal of Nanoparticle Research, vol. 12, no. 1, pp. 47–53, 2010.
[6]
B. Carr, A. Malloy, and J. Warren, “Nanoparticle Tracking Analysis,” IPT, pp. 38–40, 2008.
[7]
H. Saveyn, B. de Baets, O. Thas, P. Hole, J. Smith, and P. van der Meeren, “Accurate particle size distribution determination by nanoparticle tracking analysis based on 2-D Brownian dynamics simulation,” Journal of Colloid and Interface Science, vol. 352, no. 2, pp. 593–600, 2010.
[8]
H. Qian, M. P. Sheetz, and E. L. Elson, “Single particle tracking. Analysis of diffusion and flow in two-dimensional systems,” Biophysical Journal, vol. 60, no. 4, pp. 910–921, 1991.
[9]
X. Michalet, “Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium,” Physical Review E, vol. 82, no. 4, Article ID 041914, 2010.
[10]
ASTM, “Standard Guide for Measurement of Particle Size Distribution of Nanomaterials in Suspension by Nanoparticle Tracking Analysis,” 2012.
[11]
R. F. Domingos, M. A. Baalousha, Y. Ju-Nam et al., “Characterizing manufactured nanoparticles in the environment: multimethod determination of particle sizes,” Environmental Science and Technology, vol. 43, no. 19, pp. 7277–7284, 2009.
[12]
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, 3rd edition, 2007.
[13]
R. Benitez and Z. Nenadic, “Robust unsupervised detection of action potentials with probabilistic models,” IEEE Transactions on Biomedical Engineering, vol. 55, no. 4, pp. 1344–1354, 2008.
[14]
X. Dai, T. Erkkil?, O. Yli-Harja, and H. L?hdesm?ki, “A joint finite mixture model for clustering genes from independent Gaussian and beta distributed data,” BMC Bioinformatics, vol. 10, article 165, 2009.
[15]
B. S. Everitt and E. T. Bullmore, “Mixture model mapping of brain activation in functional magnetic resonance images,” Human Brain Mapping, vol. 7, no. 1, pp. 1–14, 1999.
[16]
S. H. Meghani, C. S. Lee, A. L. Hanlon, and D. W. Bruner, “Latent class cluster analysis to understand heterogeneity in prostate cancer treatment utilities,” BMC Medical Informatics and Decision Making, vol. 9, article 47, 2009.
[17]
R Development Core Team, R: A Language and Environment for Statistical Computing, vol. 1, R Foundation for Statistical Computing, Vienna, Austria, 2011.
[18]
C. Fraley and A. E. Raftery, “Model-based clustering, discriminant analysis, and density estimation,” Journal of the American Statistical Association, vol. 97, no. 458, pp. 611–631, 2002.
[19]
C. Fraley and A. E. Raftery, MCLUST Version 3 for R: Normal Mixture Modeling and Model-Based Clustering, 2006.
[20]
G. Schwarz, “Estimating the dimension of a model,” Annals of Statistics, vol. 6, no. 2, pp. 461–464, 1978.
[21]
A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society Series B, vol. 39, no. 1, pp. 1–38, 1977.
[22]
M. J. Saxton, “Single-particle tracking: the distribution of diffusion coefficients,” Biophysical Journal, vol. 72, no. 4, pp. 1744–1753, 1997.
[23]
M. Monopoli, C. ?berg, A. Salvati, and K. Dawson, “Biomolecular coronas provide the biological identity of nanosized materials,” Nature Nanotechnology, vol. 7, pp. 779–786, 2012.
[24]
T. Wagner, S. O. Luettmann, D. Swarat, M. Wiemann, and H. G. Lipinski, “Image analysis of free diffusing nanoparticles in vitro,” in Clinical and Biomedical Spectroscopy and Imaging II, vol. 8087 of Proceedings of SPIE, May 2011, 808726.
[25]
A. Pitek, D. O'Connell, E. Mahon, M. Monopoli, F. Bombelli, and K. Dawson, “Transferrin coated nanoparticles: study of the bionano interface in human plasma,” PloS One, vol. 7, no. 7, Article ID e40685, 2012.