Combustion method has been used as a fast and facile method to prepare nanocrystalline Co3O4 spinel employing sucrose as a combustion fuel. The products were characterized by thermal analyses (TGA and DTA), X-ray diffraction technique (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. Experimental results revealed that the molar ratio of fuel/oxidizer (F/O) plays an important role in controlling the crystallite size of Co3O4 nanoparticles. Transmission electron microscopy indicated that the crystallite size of Co3O4 nanocrystals was in the range of 13–32?nm. X-ray diffraction confirmed the formation of CoO phase with spinel Co3O4. The effect of calcination temperature on crystallite size and morphology has been, also, discussed. 1. Introduction Spinel cobalt oxide (Co3O4), an important antiferromagnetic -type semiconductor, is a technologically important and functional material, owing to its unique structure, intriguing properties, and potential practical applications in several important technological fields such as heterogeneous catalysis [1], solid state sensors [2], electrochromic sensors [3], anode materials in Li ion rechargeable batteries [4], energy storage [5], pigments and [6]. It is well known that the morphology and size of Co3O4 have a great influence on its properties, which are thus a key factor to their ultimate performance and applications. In this regard, it is desirable to tailor-synthesize nanoparticles with predesigned morphology and size distributions. Co3O4 with nanosized high surface area is expected to lead to even more attractive applications in conjunction of their traditional arena and nanotechnology [7]. Therefore, it is important to prepare Co3O4 with defined morphologies and a narrow range of size distribution. Much effort has been made to synthesize nanocrystalline Co3O4, with various particle sizes, from economical and practical aspects point of view including thermal decomposition of cobalt oxalate (60–200?nm) [8], one-pot hydrothermal reaction (average size 30?nm) [9], thermal decomposition of sol-gel derived oxalates (15–20?nm) [10], and solution combustion method (23–90?nm) [11]. Focusing our attention to the combustion route, it involves a self-sustained reaction between an oxidizer (e.g., metal nitrate) and a fuel (e.g., urea, sucrose, glycine, and hydrazides). This process not only yields nanosize oxide materials, but also allows uniform (homogeneous) doping of trace amounts of rare-earth impurity ions in a single step.
References
[1]
B. M. Abu-Zied and S. A. Soliman, “Nitrous oxide decomposition over MCO3-Co3O4 (M = Ca, Sr, Ba) catalysts,” Catalysis Letters, vol. 132, no. 3-4, pp. 299–310, 2009.
[2]
W. Y. Li, L. N. Xu, and J. Chen, “Co3O4 nanomaterials in lithium-ion batteries and gas sensors,” Advanced Functional Materials, vol. 15, no. 5, pp. 851–857, 2005.
[3]
T. Maruyama and S. Arai, “Electrochromic properties of cobalt oxide thin films prepared by chemical vapor deposition,” Journal of the Electrochemical Society, vol. 143, no. 4, pp. 1383–1386, 1996.
[4]
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries,” Nature, vol. 407, no. 6803, pp. 496–499, 2000.
[5]
S. Noguchi and M. Mizuhashi, “Optical properties of CrCo oxide films obtained by chemical spray deposition: substrate temperature effects,” Thin Solid Films, vol. 77, no. 1–3, pp. 99–106, 1981.
[6]
T. Sugimoto and E. Matijevic, “Colloidal cobalt hydrous oxides. Preparation and properties of monodispersed Co3O4,” Journal of Inorganic and Nuclear Chemistry, vol. 41, no. 2, pp. 165–172, 1979.
[7]
J. Feng and H. C. Zeng, “Size-controlled growth of Co3O4 nanocubes,” Chemistry of Materials, vol. 15, no. 14, pp. 2829–2835, 2003.
[8]
L. Ren, P. Wang, Y. Han, C. Hu, and B. Wei, “Synthesis of CoC2O4·2H2O nanorods and their thermal decomposition to Co3O4 nanoparticles,” Chemical Physics Letters, vol. 476, no. 1–3, pp. 78–83, 2009.
[9]
Y. Teng, S. Yamamoto, Y. Kusano, M. Azuma, and Y. Shimakawa, “One-pot hydrothermal synthesis of uniformly cubic Co3O4 nanocrystals,” Materials Letters, vol. 64, no. 3, pp. 239–242, 2010.
[10]
S. Thota, A. Kumar, and J. Kumar, “Optical, electrical and magnetic properties of Co3O4 nanocrystallites obtained by thermal decomposition of sol-gel derived oxalates,” Materials Science and Engineering B, vol. 164, no. 1, pp. 30–37, 2009.
[11]
J. C. Toniolo, A. S. Takimi, and C. P. Bergmann, “Nanostructured cobalt oxides (Co3O4 and CoO) and metallic Co powders synthesized by the solution combustion method,” Materials Research Bulletin, vol. 45, no. 6, pp. 672–676, 2010.
[12]
L.-H. Ai and J. Jiang, “Rapid synthesis of nanocrystalline Co3O4 by a microwave-assisted combustion method,” Powder Technology, vol. 195, no. 1, pp. 11–14, 2009.
[13]
J. Jiu, Y. Ge, X. Li, and L. Nie, “Preparation of Co3O4 nanoparticles by a polymer combustion route,” Materials Letters, vol. 54, no. 4, pp. 260–263, 2002.
[14]
L. A. Chick, L. R. Pederson, G. D. Maupin, J. L. Bates, L. E. Thomas, and G. J. Exarhos, “Glycine-nitrate combustion synthesis of oxide ceramic powders,” Materials Letters, vol. 10, no. 1-2, pp. 6–12, 1990.
[15]
T. I. Izaak, O. V. Babkina, A. I. Boronin, T. N. Drebushchak, A. I. Stadnichenko, and G. M. Mokrousov, “Constitution and properties of nanocomposites prepared by thermal decomposition of silver salts sorbed by polyacrylate matrix,” Colloid Journal, vol. 65, no. 6, pp. 720–725, 2003.
[16]
L. Xu, B. Wei, Z. Zhang, Z. Lü, H. Gao, and Y. Zhang, “Synthesis and luminescence of europium doped yttria nanophosphors via a sucrose-templated combustion method,” Nanotechnology, vol. 17, no. 17, pp. 4327–4331, 2006.
[17]
R. N. Das, A. Bandyopadhyay, and S. Bose, “Nanocrystalline α-Al2O3 using sucrose,” Journal of the American Ceramic Society, vol. 84, no. 10, pp. 2421–2423, 2001.
[18]
M. G. Lazarraga, L. Pascual, H. Gadjov et al., “Nanosize LiNiyMn2 - yO4 (0 < y ≤ 0.5) spinels synthesized by a sucrose-aided combustion method. Characterization and electrochemical performance,” Journal of Materials Chemistry, vol. 14, no. 10, pp. 1640–1647, 2004.
[19]
Y. J. Wu, A. Bandyopadhyay, and S. Bose, “Processing of alumina and zirconia nano-powders and compacts,” Materials Science and Engineering A, vol. 380, no. 1-2, pp. 349–355, 2004.
[20]
J. M. Amarilla, R. M. Rojas, and J. M. Rojo, “Understanding the sucrose-assisted combustion method: effects of the atmosphere and fuel amount on the synthesis and electrochemical performances of LiNi0.5Mn1.5O4 spinel,” Journal of Power Sources, vol. 196, no. 14, pp. 5951–5959, 2011.
[21]
N. M. Ghoneim, S. Hanafi, and S. A. Abo El-Enein, “Characteristics and effect of thermal treatment on surface texture of ultrafine zirconia powders,” Journal of Materials Science, vol. 22, no. 3, pp. 791–797, 1987.
[22]
A. Cabot, J. Arbiol, E. Rossinyol, J. R. Morante, F. Chen, and M. Liu, “Synthesis of tin oxide nanostructures with controlled particle size using mesoporous frameworks,” Electrochemical and Solid-State Letters, vol. 7, no. 5, pp. G93–G97, 2004.
[23]
J. Lu and Z. Z. Fang J, “Synthesis and characterization of nanoscaled cerium (IV) oxide via a solid-state mechanochemical method,” Journal of the American Ceramic Society, vol. 89, no. 3, pp. 842–847, 2006.