全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Microwave-Assisted Synthesis of Mixed Metal-Oxide Nanoparticles

DOI: 10.1155/2013/737831

Full-Text   Cite this paper   Add to My Lib

Abstract:

Nanoparticles of mixed metal oxides, ZrO2, ZrTiO4, and ZrV2O7 were prepared by microwave-assisted citrate sol-gel and solution combustion method. The prepared nanoparticles were characterized for their structural details using XRD and TEM techniques. The broadening of Raman bands is ascribed to local compositional fluctuations or local positional disordering produced due to random distribution of Zr4+ and Ti4+between equivalent sites. The XPS spectra confirm the incorporation of Ti in ZrO2 and suggest Zr as well as Ti in +4 oxidation state. Gelation and fast combustion seem to be the reason for smaller particle sizes. ZrV2O7 nanocrystalline material was synthesized by microwave- assisted solution combustion method. Low angle powder XRD measurements confirm the mesoporous nature of the prepared material. The effect of calcination temperature on the phase transformation of the materials has been investigated. Among tetragonal, monoclinic, and cubic phases, the monoclinic phase is predominant at higher calcinations temperature. The XPS confirms the incorporation of V2O5 in ZrO2 and suggests that Zr and V are in the same oxidation state (+4). The average particle sizes for ZrO2, ZrTiO4, and ZrV2O7 were found to be in the ranges of 5–10?nm, 2–5?nm, and 10–50?nm, respectively. 1. Introduction Combination of two metal oxides M1O and M2O can be either a simple mechanical mixing involving weak van der Waals forces or a chemical possessing chemical linkages of the type M1-O-M2. The physicochemical properties of the latter combination will be entirely different from the simple combination of individual oxides (mechanical mixture). The degree of dispersion in the chemical rout depends on preparation method and synthetic conditions. Because of this, many different synthetic routes for mixed metal oxides have been developed. Some of the popular routes for preparation of mixed oxides are coprecipitation, sol-gel method, condensed phase combustion, and microwave-assisted solution combustion method. Coprecipitation (wet precipitation) is the most widely used method for oxide synthesis. In this method hydroxide of the metals is precipitated from an aqueous solution of the metal salt by titrating it with ammonia solution. The hydroxide is washed, dried, and calcined to get the metal oxide. Sol-gel method is used to prepare metal oxides by hydrolysis and condensation of metal alkoxides : The reaction follows an SN2 mechanism in which the nucleophile OH- adds to the M+ and increases its coordination number in the transition state:(2) The H+ changes its position to alkoxy

References

[1]  L. G. Karakchiev, T. M. Zima, and N. Z. Lyakhov, “Low-temperature synthesis of zirconium titanate,” Inorganic Materials, vol. 37, no. 4, pp. 386–390, 2001.
[2]  G. K. Chuah, S. Jaenicke, and B. K. Pong, “The preparation of high-surface-area zirconia: II. Influence of precipitating agent and digestion on the morphology and microstructure of hydrous zirconia,” Journal of Catalysis, vol. 175, no. 1, pp. 80–92, 1998.
[3]  N. Q. Minh, “Ceramic fuel cells,” Journal of the American Ceramic Society, vol. 76, no. 3, pp. 563–588, 1993.
[4]  A. B. F. Martinson, J. W. Elam, J. T. Hupp, and M. J. Pellin, “ZnO nanotube based dye-sensitized solar cells,” Nano Letters, vol. 7, no. 8, pp. 2183–2187, 2007.
[5]  E. C. Subbarao and H. S. Maiti, “Oxygen sensors and pumps,” Advanced Ceramic, vol. 24, pp. 731–748, 1988.
[6]  J. D. Kim, S. Hana, S. Kawagoe, K. Sasaki, and T. Hata, “Preparation of perovskite, Pb(Zr, Ti)O3 thin-films on YSZ(11)/Si(111) substrates by post-deposition annealing,” Thin Solid Films, vol. 385, no. 1-2, pp. 293–297, 2001.
[7]  M. Laurent, U. Schreiner, P. A. Langjahr, A. E. Glazounov, and M. J. Hoffmann, “Microstructural and electrical characterization of La-doped PZT ceramics prepared by a precursor route,” Journal of the European Ceramic Society, vol. 21, no. 10-11, pp. 1495–1498, 2001.
[8]  J. T. Kim, G. G. Hong, and H. L. Lee, “Properties of the powders of the system Al2O3-ZrO2-Y2O3 prepared by precipitation method,” Journal of the Korean Ceramic Society, vol. 25, pp. 117–124, 1988.
[9]  K. Prabakaran, S. Kannan, and S. Rajeswari, “Development and characterisation of zirconia and hydroxyapatite composites for orthopaedic applications,” Trends in Biomaterials and Artificial Organs, vol. 18, no. 2, pp. 114–116, 2005.
[10]  J. L. Gole, S. M. Prokes, J. D. Stout, O. J. Glembocki, and R. Yang, “Unique properties of selectively formed zirconia nanostructures,” Advanced Materials, vol. 18, no. 5, pp. 664–667, 2006.
[11]  L. Wang, K. F. Cai, Y. Y. Wang, J. L. Yin, H. Li, and C. W. Zhou, “Preparation and characterization of tetragonal-ZrO2 nanopowders by a molten hydroxides method,” Ceramics International, vol. 35, no. 6, pp. 2499–2501, 2009.
[12]  J. Joo, T. Yu, Y. W. Kim et al., “Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals,” Journal of the American Chemical Society, vol. 125, no. 21, pp. 6553–6557, 2003.
[13]  H. Cao, X. Qiu, B. Luo et al., “Synthesis and room-temperature ultraviolet photoluminescence properties of Zirconia nanowires,” Advanced Functional Materials, vol. 14, no. 3, pp. 243–246, 2004.
[14]  S. Shukla and S. Seal, “Mechanisms of room temperature metastable tetragonal phase stabilisation in zirconia,” International Materials Reviews, vol. 50, no. 1, pp. 45–64, 2005.
[15]  N. Vittayakorn, “Synthesis and a crystal structural study of microwave dielectric Zirconium Titanate (ZrTiO4) powders via a mixed oxide synthesis route,” Journal of Ceramic Processing Research, vol. 7, no. 4, pp. 288–291, 2006.
[16]  S. V. Pol, V. G. Pol, and A. Gedanken, “Encapsulating ZnS and ZnSe nanocrystals in the carbon shell: a RAPET approach,” Journal of Physical Chemistry C, vol. 111, no. 36, pp. 13309–13314, 2007.
[17]  V. Dos Santos, M. Zeni, J. M. Hohemberger, and C. P. Bergmann, “Preparation of crystalline ZrTiO4 at low thermal treatment temperatures,” Reviews on Advanced Materials Science, vol. 24, no. 1-2, pp. 44–47, 2010.
[18]  B. M. Reddy, P. M. Sreekanth, Y. Yamada, Q. Xu, and T. Kobayashi, “Surface characterization of sulfate, molybdate, and tungstate promoted TiO2-ZrO2 solid acid catalysts by XPS and other techniques,” Applied Catalysis A, vol. 228, no. 1-2, pp. 269–278, 2002.
[19]  B. M. Reddy and A. Khan, “Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports,” Catalysis Reviews, vol. 47, no. 2, pp. 257–296, 2005.
[20]  A. Majchrowski, J. Ebothe, E. Gondek et al., “Photoinduced nonlinear optical effects in the Pr doped BiB3O6 glass nanoparticles incorporated into the polymer matrices,” Journal of Alloys and Compounds, vol. 485, no. 1-2, pp. 29–32, 2009.
[21]  Y. Djaoued, K. Ozga, A. Wojciechowski, A. H. Reshak, J. Robichaud, and I. V. Kityk, “Photoinduced effects in TiO2 nanocrystalline films with different morphology,” Journal of Alloys and Compounds, vol. 508, no. 2, pp. 599–605, 2010.
[22]  A. Adamski, Z. Sojka, K. Dyrek, M. Che, G. Wendt, and S. Albrecht, “Surface heterogeneity of zirconia-supported V2O5 catalysts. The link between structure and catalytic properties in oxidative dehydrogenation of propane,” Langmuir, vol. 15, no. 18, pp. 5733–5741, 1999.
[23]  E. V. Kondratenko, M. Cherian, and M. Baerns, “Oxidative dehydrogenation of propane over differently structured vanadia-based catalysts in the presence of O2 and N2O,” Catalysis Today, vol. 112, no. 1–4, pp. 60–63, 2006.
[24]  R. Sasikala, V. Sudarsan, T. Sakuntala, J. C. Sudakar, R. Naik, and S. R. Bharadwaj, “Nanoparticles of vanadia-zirconia catalysts synthesized by polyol-mediated route: enhanced selectivity for the oxidative dehydrogenation of propane to propene,” Applied Catalysis A, vol. 350, no. 2, pp. 252–258, 2008.
[25]  J. J. Kingsley and K. C. Patil, “A novel combustion process for the synthesis of fine particle α-alumina and related oxide materials,” Materials Letters, vol. 6, no. 11-12, pp. 427–432, 1988.
[26]  S. T. Aruna and A. S. Mukasyan, “Combustion synthesis and nanomaterials,” Current Opinion in Solid State and Materials Science, vol. 12, no. 3-4, pp. 44–50, 2008.
[27]  S. Kumarsrinivasan, A. Verma, and S. G. Chinnakonda, “Molecular oxygen-assisted oxidative dehydrogenation of ethylbenzene to styrene with nanocrystalline Ti1-xVxO2,” Green Chemistry, vol. 14, pp. 461–471, 2012.
[28]  B. D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, Mass, USA, 2nd edition, 1978.
[29]  M. De and D. Kunzru, “Effect of calcium and potassium on V2O5/ZrO2 catalyst for oxidative dehydrogenation of propane: a comparative study,” Catalysis Letters, vol. 102, no. 3-4, pp. 237–246, 2005.
[30]  A. Khodakov, J. Yang, S. Su, E. Iglesia, and A. T. Bell, “Structure and properties of vanadium oxide-zirconia catalysts for propane oxidative dehydrogenation,” Journal of Catalysis, vol. 177, no. 2, pp. 343–351, 1998.
[31]  S. Biz and M. L. Occelli, “Synthesis and characterization of mesostructured materials,” Catalysis Reviews, vol. 40, no. 3, pp. 329–407, 1998.
[32]  K. S. Bartwal, S. Kar, N. Kaithwas et al., “Synthesis and characterization of y3Al5O12 nanocrystals,” Advanced Materials Research, vol. 24-25, pp. 665–670, 2007.
[33]  N. Kaithwas, M. Dave, S. Kar, S. Verma, and K. S. Bartwal, “Preparation of Nd:Y3Al5O12 nanocrystals by low temperature glycol route,” Crystal Research and Technology, vol. 45, no. 11, pp. 1179–1182, 2010.
[34]  S. Kar, S. Verma, and K. S. Bartwal, “Preparation of Mn doped Li2B4O7 nanoparticles by glass quenching,” Journal of Alloys and Compounds, vol. 495, no. 1, pp. 288–291, 2010.
[35]  K. J. Rao and P. D. Ramesh, “Use of microwaves for the synthesis and processing of materials,” Bulletin of Materials Science, vol. 18, no. 4, pp. 447–465, 1995.
[36]  S. Park, D. W. Lee, J. C. Lee, and J. H. Lee, “Photocatalytic silver recovery using ZnO nanopowders synthesized by modified glycine-nitrate process,” Journal of the American Ceramic Society, vol. 86, no. 9, pp. 1508–1512, 2003.
[37]  B. K. Kim, J. W. Hahn, and K. R. Han, “Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy,” Journal of Materials Science Letters, vol. 16, no. 8, pp. 669–671, 1997.
[38]  Y. K. Kim and H. M. Jang, “Raman line-shape analysis of nano-structural evolution in cation-ordered ZrTiO7-based dielectrics,” Solid State Communications, vol. 127, no. 6, pp. 433–437, 2003.
[39]  M. A. Krebs and R. A. Condrate, “A Raman spectral characterization of various crystalline mixtures in the ZrO2-TiO2 and HfO2-TiO2 systems,” Journal of Materials Science Letters, vol. 7, no. 12, pp. 1327–1330, 1988.
[40]  C. V. Ramana, R. J. Smith, O. M. Hussain, M. Massot, and C. M. Julien, “Surface analysis of pulsed laser-deposited V2O5 thin films and their lithium intercalated products studied by Raman spectroscopy,” Surface and Interface Analysis, vol. 37, no. 4, pp. 406–411, 2005.
[41]  U. L. C. Hemamala, F. El-Ghussein, D. V. S. Muthu et al., “High-pressure Raman and infrared study of ZrV2O7,” Solid State Communications, vol. 141, no. 12, pp. 680–684, 2007.
[42]  A. A. Lavrentyev, B. V. Gabrelian, P. N. Shkumat et al., “Electronic structure of ZrTiO4 and HfTiO4: self-consistent cluster calculations and X-ray spectroscopy studies,” Journal of Physics and Chemistry of Solids, vol. 72, no. 2, pp. 83–89, 2011.
[43]  I. F. Moulder, W. E. Sticlke, P. E. Sobol, and K. E. Bomben, Handbook of X-Ray Photoelectron Spectroscopy, Edited by J. Chastian, Perkin-Elmer, Eden Prairie, Minn, USA, 1992.
[44]  M. Kantcheva, “Spectroscopic characterization of vanadium(v) oxo species deposited on zirconia,” Physical Chemistry Chemical Physics, vol. 2, no. 13, pp. 3043–3048, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133