This work describes a method for the deposition of Au nanoparticles on glass plates (Au-glass). An electroless metal plating technique was extended to the Au nanoparticle deposition. The technique consisted of three steps that took place on the glass plate: (1) adsorption of Sn2+ ions, (2) deposition of metallic Ag nuclei generated by reducing Ag+ ions with Sn2+ ions on the Sn-adsorbed sites, and (3) deposition of Au nanoparticles by reducing Au+ ions on the Ag surface. TEM observation revealed that metallic Au nanoparticles with a size of ?nm were formed on the glass surface. A surface plasmon resonance absorption peak was observed, and its peak wavelength redshifted by immersing the Au-glass into a solution with a large dielectric constant. The redshift corresponded qualitatively to the calculation by the Mie theory accompanying the Drude expression, which was based on the change of the dielectric constant of the solution. The obtained results indicated that the Au-glass functioned as a sensor for measuring the dielectric constant of the solution. 1. Introduction Nanometer-sized particles have special interest because they are expected to exhibit unique properties different from those of bulk material [1, 2], which is called “size effect.” Among various nanoparticles, nanoparticles of metals such as Au and Ag show a special optical property like surface plasmon resonance (SPR) absorption, which depends on particle size and particle shape [1, 3, 4]. Since the SPR absorption is also dependent on environment around the particles such as dielectric constant [1, 3, 4], this dependence can be used to measure dielectric constants of materials [3, 4]. Nanoparticles tend to aggregate, which deteriorates their unique properties derived from the size effect. Immobilizing the nanoparticles on supports such as powders and plates is a candidate to prevent the aggregation. Recently, there have been some reports on deposition of metal nanoparticles on submicron-sized particles [5–8]. Frequently, the deposition techniques involve simple mixing of a metal nanoparticle colloid solution and a suspension of submicron-sized spheres [6, 9, 10]. In this technique, however, aggregation of the nanoparticles during the deposition cannot be negligible, and it is necessary to remove excess undeposited nanoparticles out of the suspension. An electroless metal plating technique can make metallic films plated on insulating support materials [11–13]. In our previous work, Au nanoparticles were successfully deposited on silica spheres by the technique [14]. The technique consists of
References
[1]
S. Basu, S. K. Ghosh, S. Kundu et al., “Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling,” Journal of Colloid and Interface Science, vol. 313, no. 2, pp. 724–734, 2007.
[2]
L. Wang, W. Ma, L. Xu et al., “Nanoparticle-based environmental sensors,” Materials Science and Engineering R, vol. 70, no. 3–6, pp. 265–274, 2010.
[3]
T. Som and B. Karmakar, “Plasmon tuning of nano-Au in dichroic devitrified antimony glass nanocomposites by refractive index control,” Chemical Physics Letters, vol. 479, no. 1–3, pp. 100–104, 2009.
[4]
A. Chhatre, P. Solasa, S. Sakle, R. Thaokar, and A. Mehra, “Color and surface plasmon effects in nanoparticle systems: case of silver nanoparticles prepared by microemulsion route,” Colloids and Surfaces A, vol. 404, pp. 83–92, 2012.
[5]
M. A. Nadeem, M. Murdoch, G. I. N. Waterhouse et al., “Photoreaction of ethanol on Au/TiO2 anatase: comparing the micro to nanoparticle size activities of the support for hydrogen production,” Journal of Photochemistry and Photobiology A, vol. 216, no. 2–4, pp. 250–255, 2010.
[6]
B. J. Jankiewicz, D. Jamiola, J. Choma, and M. Jaroniec, “Silica-metal core-shell nanostructures,” Advances in Colloid and Interface Science, vol. 170, no. 1-2, pp. 28–47, 2012.
[7]
J. Xue, C. Wang, and Z. Ma, “A facile method to prepare a series of SiO2@Au core/shell structured nanoparticles,” Materials Chemistry and Physics, vol. 105, no. 2-3, pp. 419–425, 2007.
[8]
T. Liu, D. Li, D. Yang, and M. Jiang, “An improved seed-mediated growth method to coat complete silver shells onto silica spheres for surface-enhanced Raman scattering,” Colloids and Surfaces A, vol. 387, no. 1–3, pp. 17–22, 2011.
[9]
S. L. Westcott and N. J. Halas, “Electron relaxation dynamics in semicontinuous metal films on nanoparticle surfaces,” Chemical Physics Letters, vol. 356, no. 3-4, pp. 207–213, 2002.
[10]
D. A. Slanac, L. Li, A. Mayoral et al., “Atomic resolution structual insights into PdPt nanoparticle-carbon interactions for the design of highly active and stable electrocatalysts,” Electrochimica Acta, vol. 64, pp. 35–45, 2012.
[11]
Q. Zhou, H. Chen, and Y. Wang, “Region-selective electroless gold plating on polycarbonate sheets by UV-patterning in combination with silver activating,” Electrochimica Acta, vol. 55, no. 7, pp. 2542–2549, 2010.
[12]
J. Hu, W. Li, J. Chen, X. Zhang, and X. Zhao, “Novel plating solution for electroless deposition of gold film onto glass surface,” Surface and Coatings Technology, vol. 202, no. 13, pp. 2922–2926, 2008.
[13]
K. Miyoshi, S. Fujikawa, and T. Kunitake, “Fabrication of nanoline arrays of noble metals by electroless plating and selective etching process,” Colloids and Surfaces A, vol. 321, no. 1–3, pp. 238–243, 2008.
[14]
Y. Kobayashi, Y. Tadaki, D. Nagao, and M. Konno, “Deposition of gold nanoparticles on silica spheres by electroless metal plating technique,” Journal of Colloid and Interface Science, vol. 283, no. 2, pp. 601–604, 2005.
[15]
V. P. Menon and C. R. Martin, “Fabrication and evaluation of nanoelectrode ensembles,” Analytical Chemistry, vol. 67, no. 13, pp. 1920–1928, 1995.
[16]
L. M. Liz-Marzán, M. Giersig, and P. Mulvaney, “Synthesis of nanosized gold-silica core-shell particles,” Langmuir, vol. 12, no. 18, pp. 4329–4335, 1996.
[17]
C. F. Bohren and D. F. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, NY, USA, 1983.