全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Sol-Gel Synthesis of TiO2/SiO2 and ZnO/SiO2 Composite Films and Evaluation of Their Photocatalytic Activity towards Methyl Green

DOI: 10.1155/2013/507161

Full-Text   Cite this paper   Add to My Lib

Abstract:

The TiO2/SiO2 and ZnO/SiO2 composite films were prepared by sol-gel dip coating method. The surface morphology and crystal structure of thin films were characterized by means of scanning electron microscopy (SEM) with elementary dispersive X-ray analysis (EDX) and X-ray diffractometer (XRD). Optical properties of films have been investigated using ultraviolet and visible spectroscopy (UV-visible spectroscopy). The photocatalytic activity was established by testing the degradation and decolorization of methyl green (MG) from aqueous solution with artificial UV-light. 1. Introduction Nanomaterials may provide solutions to scientific and ecological challenges in the areas of catalysis, medicine, solar energy conversion, and water treatment [1, 2]. This increasing demand must be accompanied by “green” synthesis methods. In the global efforts to decrease generated hazardous waste, “green” chemistry and chemical processes are progressively integrating with contemporary developments in science and industry. Implementation of these sustainable processes should adopt the 12 fundamental principles of green chemistry [3]. These principles are gear to guide in minimizing the use of dangerous products and maximizing the efficiency of chemical processes. Hence, any synthetic route or chemical process should address these principles by using environmentally benign solvents and nontoxic chemicals [4]. From a biological and physiological point of view, the removal of poisonous chemicals from waste water is currently one of the most important subjects in pollution control. MG is a basic triphenylmethane-type dicationic dye, usually used for staining solutions in medicine and biology [5] and as a photochromophore to sensitize gelatinous films [6]. Triphenylmethane dyes are used widely in the textile industry for dyeing of nylon, wool, cotton, and silk as well as for coloring of waxes, varnish, oil, plastics, and fats. The application of illuminated semiconductors has been effectively working for the decomposition of variety of organic contaminants in water [7]. The major organic compounds that constitute the industrial wastewater include dyes, phenols, chlorophenols, aliphatic alcohols, aromatics, polymers, and carboxylic acids. Among these, toluene, salicylic acid, and 4-chlorophenol have been identified as a water pollutant arising from numerous sources including paper milling, textile, and cosmetic industries [8], causing bad odor to the water. Hence, the destruction of organic compounds is of considerable interest. Over the years, a large number of semiconductors have

References

[1]  J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, “Toward greener nanosynthesis,” Chemical Reviews, vol. 107, no. 6, pp. 2228–2269, 2007.
[2]  J. E. Hutchison, “Greener nanoscience: a proactive approach to advancing applications and reducing implications of nanotechnology,” ACS Nano, vol. 2, no. 3, pp. 395–402, 2008.
[3]  J. M. DeSimone, “Practical approaches to green solvents,” Science, vol. 297, no. 5582, pp. 799–803, 2002.
[4]  P. Raveendran, J. Fu, and S. L. Wallen, “Completely “Green” synthesis and stabilization of metal nanoparticles,” Journal of the American Chemical Society, vol. 125, no. 46, pp. 13940–13941, 2003.
[5]  F. J. Green, The Sigma–Aldrih Handbook of Stains, Dyes, and Indicators, Aldrich Chemical, Milwaukee, Wis, USA, 1990.
[6]  T. Geethakrishnan and P. K. Palanisamy, “Degenerate four-wave mixing experiments in Methyl green dye-doped gelatin film,” Optik, vol. 117, no. 6, pp. 282–286, 2006.
[7]  M. A. Behnajady, N. Modirshahla, and R. Hamzavi, “Kinetic study on photocatalytic degradation of C.I. Acid Yellow 23 by ZnO photocatalyst,” Journal of Hazardous Materials, vol. 133, no. 1–3, pp. 226–232, 2006.
[8]  A. Mills, C. E. Holland, R. H. Davies, and D. Worsely, “Photo mineralization of salicylic acid: a kinetic study,” Journal of Photochemistry and Photobiology A, vol. 83, pp. 257–263, 1994.
[9]  S. K. Kansal, M. Singh, and D. Sud, “Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts,” Journal of Hazardous Materials, vol. 141, no. 3, pp. 581–590, 2007.
[10]  Y. Wei, Y. Huang, J. Wu, et al., “Synthesis of hierarchically structured ZnO spheres by facile methods and their photocatalytic deNOx properties,” Journal of Hazardous Materials, vol. 248, pp. 202–210, V.
[11]  T. Miyata, S. Tsukada, and T. Minami, “Preparation of anatase TiO2 thin films by vacuum arc plasma evaporation,” Thin Solid Films, vol. 496, no. 1, pp. 136–140, 2006.
[12]  S. Wang, X. Wu, W. Qin, and Z. Jiang, “TiO2 films prepared by micro-plasma oxidation method for dye-sensitized solar cell,” Electrochimica Acta, vol. 53, no. 4, pp. 1883–1889, 2007.
[13]  X. H. Wu, Z. H. Jiang, L. H. Liu, X. D. Li, and X. G. Hu, “TiO2 ceramic films prepared by micro-plasma oxidation method for photodegradation of rhodamine B,” Materials Chemistry and Physics, vol. 80, no. 1, pp. 39–43, 2003.
[14]  S. Karuppuchamy, N. Suzuki, S. Ito, and T. Endo, “Enhanced efficiency of dye sensitized solar cells by UV-O3 treatment of TiO2 layer,” Current Applied Physics, vol. 9, pp. 243–248, 2009.
[15]  D. L. Liao, C. A. Badour, and B. Q. Liao, “Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange,” Journal of Photochemistry and Photobiology A, vol. 194, no. 1, pp. 11–19, 2008.
[16]  X. Zhang and Q. Liu, “Preparation and characterization of titania photocatalyst co-doped with boron, nickel, and cerium,” Materials Letters, vol. 62, no. 17-18, pp. 2589–2592, 2008.
[17]  L. Andronic and A. Duta, “The influence of TiO2 powder and film on the photodegradation of methyl orange,” Materials Chemistry and Physics, vol. 112, no. 3, pp. 1078–1082, 2008.
[18]  I. Stambolova, V. Blaskov, I. N. Kuznetsova, N. Kostova, and S. Vassilev, “Effect of the thermal treatment on the morphology and optical properties of nanosized TiO2 films,” Journal of Optoelectronics and Advanced Materials, vol. 13, pp. 381–386, 2011.
[19]  B. H. Kim, J. Y. Lee, Y. H. Choa, M. Higuchi, and N. Mizutani, “The effect of target density and its morphology on TiO2 thin films,” Materials Science and Engineering B, vol. 107, pp. 289–294, 2004.
[20]  T. K. Ghorai, D. Dhak, S. K. Biswas, S. Dalai, and P. Pramanik, “Photocatalytic oxidation of organic dyes by nano-sized metal molybdate incorporated titanium dioxide ( ) (M?=?Ni, Cu, Zn) photocatalysts,” Journal of Molecular Catalysis A, vol. 273, no. 1-2, pp. 224–229, 2007.
[21]  I. Poulios, D. Makri, and X. Prohaska, “Photocatalytic treatment of olive milling wastewater: oxidation of protocatechuic acid,” GLOBAL NEST, vol. 1, pp. 55–62, 1999.
[22]  S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2,” Solar Energy Materials and Solar Cells, vol. 77, no. 1, pp. 65–82, 2003.
[23]  C. A. K. Gouvêa, F. Wypych, S. G. Moraes, N. Durán, N. Nagata, and P. Peralta-Zamora, “Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution,” Chemosphere, vol. 40, no. 4, pp. 433–440, 2000.
[24]  C. Lizama, J. Freer, J. Baeza, and H. D. Mansilla, “Optimized photodegradation of reactive blue 19 on TiO2 and ZnO suspensions,” Catalysis Today, vol. 76, no. 2–4, pp. 235–246, 2002.
[25]  S. Lathasree, A. N. Rao, B. Sivasankar, V. Sadasivam, and K. Rengaraj, “Heterogeneous photocatalytic mineralisation of phenols in aqueous solutions,” Journal of Molecular Catalysis A, vol. 223, no. 1-2, pp. 101–105, 2004.
[26]  L. B. Khalil, W. E. Mourad, and M. W. Rophael, “Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination,” Applied Catalysis B, vol. 17, no. 3, pp. 267–273, 1998.
[27]  Y. Huang, Y. Wei, J. Wu, et al., “Low temperature synthesis and photocatalytic properties of highly oriented ZnO/TiO2?xNy coupled photocatalysts,” Applied Catalysis B, vol. 123, pp. 9–17, 2012.
[28]  S. Sakthivel, B. Neppolian, M. Palanichamy, B. Arabindoo, and V. Murugesan, “Photocatalytic degradation of leather dye, Acid green 16 using ZnO in the slurry and thin film forms,” Indian Journal of Chemical Technology, vol. 6, no. 3, pp. 161–165, 1999.
[29]  I. Poulios and I. Tsachpinis, “Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides,” Journal of Chemical Technology and Biotechnology, vol. 74, pp. 349–357, 1999.
[30]  S. S. Shinde, P. S. Shinde, C. H. Bhosale, and K. Y. Rajpure, “Zinc oxide mediated heterogeneous photocatalytic degradation of organic species under solar radiation,” Journal of Photochemistry and Photobiology B, vol. 104, no. 3, pp. 425–433, 2011.
[31]  I. Stambolova, M. Shipochka, V. Blaskov, A. Loukanovb, and S. Vassilevc, “Sprayed nanostructured TiO2 films for efficient photocatalytic degradation of textile azo dye,” Journal of Photochemistry and Photobiology B, vol. 117, pp. 19–26, 2012.
[32]  G. Torres Delgado, C. I. Zú?iga Romero, S. A. Mayén Hernández, R. Castanedo Péreza, and O. Zelaya Angel, “Optical and structural properties of the sol– gel-prepared ZnO thin films and their effect on the photocatalytic activity,” Solar Energy Materials and Solar Cells, vol. 93, no. 1, pp. 55–59, 2009.
[33]  X. Zhang and H. Zheng, “Synthesis of TiO2-doped SiO2 composite films and its applications,” Bulletin of Materials Science, vol. 32, pp. 787–790, 2008.
[34]  A. Mahyar, M. A. Behnajady, and N. Modirshahla, “Enhanced photocatalytic degradation of C.I. Basic violet 2 using TiO2-SiO2 composite nanoparticles,” Photochemistry and Photobiology, vol. 87, no. 4, pp. 795–801, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133