This paper provides a comprehensive review of the present trends in graphene research with an emphasis on graphene-based nanocomposites and their applications. Various synthesis routes have recently been devised for mass production of graphene to address the needs of the composite industry. This paper describes the worldwide scenario of research and patents being conducted in the field of graphene nanocomposites. It concludes with a discussion of the impact of graphene in composites and the future challenges to meeting industrial demands. 1. Introduction to Graphene The single-layered atom-thick flatbed structure has revolutionized the nanotechnology platform since its discovery [1]. To date, several attempts have been made to synthesize graphene on a large scale to address the needs of various industries, particularly the composite industry, in which the use of graphene has dramatically transformed the global market for the production of state-of-the-art composite materials. The addition of graphene to a host matrix has achieved a number of enhanced properties with promising applications in many industries, such as aerospace, electronics, energy, structural and mechanical, environmental, medicine, and food and beverage. Since 2004, graphene has taken the nanotechnology platform by storm, with exponential growth in its applications. The remarkable properties of graphene make it a “magic bullet” for the composite world. Several papers on graphene and graphene-based nanocomposites have been published. According to Geim [2], graphene research has reached an unexpectedly great height and has emerged as a champion in the field of applied sciences. A simple search in Web of Science, Google Scholar, or Science-Direct yields several thousands of papers on graphene. Since 2000, there have been a total of 23,945 research papers published on various synthesis methods and on isolation of graphene on a large scale. The numbers are still growing exponentially. An analysis using the Web of Science tool reveals that the majority of graphene publications come from countries of Asia, followed by Europe, the Americas (countries between Canada and Argentina), Australia, and Africa. Our record count analysis based on subject-wise publications found that the majority of the publications were published in the area of physics, followed by chemistry, materials science, technology-based topics, engineering, electrochemistry, polymer science, and many more. According to the latest report released by the BBC, “Graphene: Technologies, Applications and Markets,” the graphene
References
[1]
K. S. Novoselov, A. K. Geim, S. V. Morozov et al., “Electric field in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666–669, 2004.
[2]
A. K. Geim, “Graphene: status and prospects,” Science, vol. 324, no. 5934, pp. 1530–1534, 2009.
[3]
K. Sambasivudu and M. Yashwant, “Challenges and opportunities for the mass production of high quality graphene: an analysis of worldwide patents,” Nanotech Insights, 2012.
[4]
R. M. Frazier, D. T. Daly, R. P. Swatloski, K. W. Hathcock, and C. R. South, “Recent progress in graphene-related nanotechnologies,” Recent Patents on Nanotechnology, vol. 3, no. 3, pp. 164–176, 2009.
[5]
S. Park and R. S. Ruoff, “Chemical methods for the production of graphenes,” Nature Nanotechnology, vol. 4, no. 4, pp. 217–224, 2009.
[6]
X. Lu, M. Yu, H. Huang, and R. S. Ruoff, “Tailoring graphite with the goal of achieving single sheets,” Nanotechnology, vol. 10, no. 3, pp. 269–272, 1999.
[7]
D. Pan, S. Wang, B. Zhao et al., “Li storage properties of disordered graphene nanosheets,” Chemistry of Materials, vol. 21, no. 14, pp. 3136–3142, 2009.
[8]
H. L. Guo, X. F. Wang, Q. Y. Qian, F. Wang, and X. Xia, “A green approach to the synthesis of graphene nanosheets,” ACS Nano, vol. 3, no. 9, pp. 2653–2659, 2009.
[9]
K. S. Kim, Y. Zhao, H. Jang et al., “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature, vol. 457, no. 7230, pp. 706–710, 2009.
[10]
P. W. Sutter, J. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nature Materials, vol. 7, no. 5, pp. 406–411, 2008.
[11]
X. Li, W. Cai, J. An et al., “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, vol. 324, no. 5932, pp. 1312–1314, 2009.
[12]
M. Eizenberg and J. M. Blakely, “Carbon monolayer phase condensation on Ni(111),” Surface Science, vol. 82, no. 1, pp. 228–236, 1979.
[13]
A. Reina, X. Jia, J. Ho et al., “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Letters, vol. 9, no. 1, pp. 30–35, 2009.
[14]
A. Dato, V. Radmilovic, Z. Lee, J. Phillips, and M. Frenklach, “Substrate-free gas-phase synthesis of graphene sheets,” Nano Letters, vol. 8, no. 7, pp. 2012–2016, 2008.
[15]
T. Yamada, J. Kim, M. Ishihara, and M. Hasegawa, “Low-temperature graphene synthesis using microwave plasma CVD,” Journal of Physics D, vol. 46, no. 6, Article ID 063001, 2013.
[16]
T. Aizawa, R. Souda, S. Otani, Y. Ishizawa, and C. Oshima, “Anomalous bond of monolayer graphite on transition-metal carbide surfaces,” Physical Review Letters, vol. 64, no. 7, pp. 768–771, 1990.
[17]
X. Li, Y. Zhu, W. Cai et al., “Transfer of large-area graphene films for high-performance transparent conductive electrodes,” Nano Letters, vol. 9, no. 12, pp. 4359–4363, 2009.
[18]
D. J. Campos, H. J. M. Romo, X. Jia et al., “Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons,” Nano Letters, vol. 8, no. 9, pp. 2773–2778, 2008.
[19]
T. Lu, Y. Zhang, H. Li, L. Pan, Y. Li, and Z. Sun, “Electrochemical behaviors of graphene-ZnO and graphene-SnO2 composite films for supercapacitors,” Electrochimica Acta, vol. 55, no. 13, pp. 4170–4173, 2010.
[20]
V. C. Tung, M. J. Allen, Y. Yang, and R. B. Kaner, “High-throughput solution processing of large-scale graphene,” Nature Nanotechnology, vol. 4, no. 1, pp. 25–29, 2009.
[21]
C. N. R. Rao, A. K. Sood, K. S. Subrahmanyam, and A. Govindaraj, “Graphene: the new two-dimensional nanomaterial,” Angewandte Chemie, vol. 48, no. 42, pp. 7752–7777, 2009.
[22]
W. Guoxiu, Y. Juan, P. Jinsoo et al., “Facile synthesis and characterization of graphene nanosheets,” Journal of Physical Chemistry C, vol. 112, no. 22, pp. 8192–8195, 2008.
[23]
X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H. J. R?der, and K. Müllen, “Two-dimensional graphene nanoribbons,” Journal of the American Chemical Society, vol. 130, no. 13, pp. 4216–4217, 2008.
[24]
S. Stankovich, D. A. Dikin, R. D. Piner et al., “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide,” Carbon, vol. 45, no. 7, pp. 1558–1565, 2007.
[25]
Y. Liang, D. Wu, X. Feng, and K. Müllen, “Dispersion of graphene sheets in organic solvent supported by ionic interactions,” Advanced Materials, vol. 21, no. 17, pp. 1679–1683, 2009.
[26]
K. A. Worsley, P. Ramesh, S. K. Mandal, S. Niyogi, M. E. Itkis, and R. C. Haddon, “Soluble graphene derived from graphite fluoride,” Chemical Physics Letters, vol. 445, no. 1–3, pp. 51–56, 2007.
[27]
Y. Carissan and W. Klopper, “Growing graphene sheets from reactions with methyl radicals: a quantum chemical study,” ChemPhysChem, vol. 7, no. 8, pp. 1770–1778, 2006.
[28]
L. Zhi and K. Müllen, “A bottom-up approach from molecular nanographenes to unconventional carbon materials,” Journal of Materials Chemistry, vol. 18, no. 13, pp. 1472–1484, 2008.
[29]
N. Li, Z. Wang, K. Zhao, Z. Shi, Z. Gu, and S. Xu, “Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method,” Carbon, vol. 48, no. 1, pp. 255–259, 2010.
[30]
S. Karmakar, N. V. Kulkarni, A. B. Nawale et al., “A novel approach towards selective bulk synthesis of few-layer graphenes in an electric arc,” Journal of Physics D, vol. 42, no. 11, pp. 115201–115214, 2009.
[31]
K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Simple method of preparing graphene flakes by an arc-discharge method,” Journal of Physical Chemistry C, vol. 113, no. 11, pp. 4257–4259, 2009.
[32]
Z. S. Wu, W. Ren, L. Gao et al., “Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation,” ACS Nano, vol. 3, no. 2, pp. 411–417, 2009.
[33]
O. Volotskova, I. Levchenko, A. Shashurin, Y. Raitses, K. Ostrikov, and M. Keidar, “Single-step synthesis and magnetic separation of graphene and carbon nanotubes in arc discharge plasmas,” Nanoscale, vol. 2, no. 10, pp. 2281–2285, 2010.
[34]
V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, “Graphene based materials: past, present and future,” Progress in Materials Science, vol. 56, no. 8, pp. 1178–1271, 2011.
[35]
L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes,” Nature, vol. 458, no. 7240, pp. 877–880, 2009.
[36]
C. Zhu, S. Guo, Y. Fang, and S. Dong, “Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets,” ACS Nano, vol. 4, no. 4, pp. 2429–2437, 2010.
[37]
T. Shimizu, J. Haruyama, D. C. Marcano et al., “Large intrinsic energy bandgaps in annealed nanotube-derived graphene nanoribbons,” Nature Nanotechnology, vol. 6, no. 1, pp. 45–50, 2011.
[38]
D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii et al., “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature, vol. 458, no. 7240, pp. 872–876, 2009.
[39]
A. Sinitskii, A. Dimiev, D. V. Kosynkin, and J. M. Tour, “Graphene nanoribbon devices produced by oxidative unzipping of carbon nanotubes,” ACS Nano, vol. 4, no. 9, pp. 5405–5413, 2010.
[40]
A. Sinitskii, A. Dimiev, D. A. Corley, A. A. Fursina, D. V. Kosynkin, and J. M. Tour, “Kinetics of diazonium functionalization of chemically converted graphene nanoribbons,” ACS Nano, vol. 4, no. 4, pp. 1949–1954, 2010.
[41]
A. L. Elias, A. R. Botello-Méndez, D. Meneses-Rodríguez et al., “Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nanoscalpels,” Nano Letters, vol. 10, no. 2, pp. 366–372, 2010.
[42]
L. Jiao, X. Wang, G. Diankov, H. Wang, and H. Dai, “Facile synthesis of high-quality graphene nanoribbons,” Nature Nanotechnology, vol. 5, no. 5, pp. 321–325, 2010.
[43]
L. Xie, L. Jiao, and H. Dai, “Selective etching of graphene edges by hydrogen plasma,” Journal of the American Chemical Society, vol. 132, no. 42, pp. 14751–14753, 2010.
[44]
R. J. Young, I. A. Kinloch, L. Gong, and K. S. Novoselov, “The mechanics of graphene nanocomposites: a review,” Composites Science and Technology, vol. 72, no. 12, pp. 1459–1476, 2012.
[45]
D. Wei, L. Xie, K. K. Lee et al., “Controllable unzipping for intramolecular junctions of graphene nanoribbons and single-walled carbon nanotubes,” Nature Communications, vol. 4, p. 1374, 2013.
[46]
M. Choucair, P. Thordarson, and J. A. Stride, “Gram-scale production of graphene based on solvothermal synthesis and sonication,” Nature Nanotechnology, vol. 4, no. 1, pp. 30–33, 2009.
[47]
A. V. Murugan, T. Muraliganth, and A. Manthiram, “Rapid, facile microwave-solvothermal synthesis of graphene nanosheets and their polyaniline nanocomposites for energy strorage,” Chemistry of Materials, vol. 21, no. 21, pp. 5004–5006, 2009.
[48]
P. Wang, T. Jiang, C. Zhu, Y. Zhai, D. Wang, and S. Dong, “One-step, solvothermal synthesis of graphene-CdS and graphene-ZnS quantum dot nanocomposites and their interesting photovoltaic properties,” Nano Research, pp. 1–6, 2010.
[49]
H. Kim, A. A. Abdala, and C. W. MacOsko, “Graphene/polymer nanocomposites,” Macromolecules, vol. 43, no. 16, pp. 6515–6530, 2010.
[50]
C. Berger, Z. Song, X. Li et al., “Electronic confinement and coherence in patterned epitaxial graphene,” Science, vol. 312, no. 5777, pp. 1191–1196, 2006.
[51]
W. A. de Heer, C. Berger, X. Wu et al., “Epitaxial graphene,” Solid State Communications, vol. 143, no. 1-2, pp. 92–100, 2007.
[52]
E. Rollings, G.-H. Gweon, S. Y. Zhou et al., “Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate,” Journal of Physics and Chemistry of Solids, vol. 67, no. 9-10, pp. 2172–2177, 2006.
[53]
Z. H. Ni, W. Chen, X. F. Fan et al., “Raman spectroscopy of epitaxial graphene on a SiC substrate,” Physical Review B, vol. 77, no. 11, pp. 115416–115422, 2008.
[54]
T. Seyller, A. Bostwick, K. V. Emtsev et al., “Epitaxial graphene: a new material,” Physica Status Solidi B, vol. 245, no. 7, pp. 1436–1446, 2008.
[55]
M. J. Allen, V. C. Tung, and R. B. Kaner, “Honeycomb carbon: a review of graphene,” Chemical Reviews, vol. 110, no. 1, pp. 132–145, 2010.
[56]
J. Hass, W. A. De Heer, and E. H. Conrad, “The growth and morphology of epitaxial multilayer graphene,” Journal of Physics Condensed Matter, vol. 20, no. 32, Article ID 323202, 2008.
[57]
J. Kedzierski, P. Hsu, P. Healey et al., “Epitaxial graphene transistors on SiC substrates,” IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 2078–2085, 2008.
[58]
C. Berger, Z. Song, X. Li et al., “Magnetotransport in high mobility epitaxial graphene,” Physica Status Solidi A, vol. 204, no. 6, pp. 1746–1750, 2007.
[59]
J. Wintterlin and M.-L. Bocquet, “Graphene on metal surfaces,” Surface Science, vol. 603, no. 10–12, pp. 1841–1852, 2009.
[60]
M. Sprinkle, P. Soukiassian, W. A. De Heer, C. Berger, and E. H. Conrad, “Epitaxial graphene: the material for graphene electronics,” Physica Status Solidi, vol. 3, no. 6, pp. A91–A94, 2009.
[61]
S. Li, D. Deng, Q. Shi, and S. Liu, “Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine,” Microchimica Acta, pp. 1–7, 2012.
[62]
J. Yang, S. Deng, J. Lei, H. Ju, and S. Gunasekaran, “Electrochemical synthesis of reduced graphene sheet-AuPd alloy nanoparticle composites for enzymatic biosensing,” Biosensors and Bioelectronics, vol. 29, no. 1, pp. 159–166, 2011.
[63]
N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, and J. Chen, “One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite,” Advanced Functional Materials, vol. 18, no. 10, pp. 1518–1525, 2008.
[64]
Y. Zhu, S. Murali, W. Cai et al., “Graphene and graphene oxide: synthesis, properties, and applications,” Advanced Materials, vol. 22, no. 35, pp. 3906–3924, 2010.
[65]
D. Galpaya, M. Wang, M. Liu, N. Motta, E. Waclawik, and C. Yan, “Recent advances in fabrication and characterization of graphene-polymer nanocomposites,” Graphene, vol. 1, no. 2, pp. 30–49, 2012.
[66]
C. N. R. Rao, A. K. Sood, R. Voggu, and K. S. Subrahmanyam, “Some novel attributes of graphene,” Journal of Physical Chemistry Letters, vol. 1, no. 2, pp. 572–580, 2010.
[67]
C. Soldano, A. Mahmood, and E. Dujardin, “Production, properties and potential of graphene,” Carbon, vol. 48, no. 8, pp. 2127–2150, 2010.
[68]
K. S. Novoselov, D. Jiang, F. Schedin et al., “Two-dimensional atomic crystals,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 30, pp. 10451–10453, 2005.
[69]
T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition,” Surface Science, vol. 264, no. 3, pp. 261–270, 1992.
[70]
J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, “Graphene-based polymer nanocomposites,” Polymer, vol. 52, no. 1, pp. 5–25, 2011.
[71]
R. C. Daniel, D. A. Benjamin, G. Nageswara et al., “Experimental review of graphene,” ISRN Condensed Matter Physics, vol. 2012, Article ID 501686, 56 pages, 2012.
[72]
L. Chen, Y. Hernandez, X. Feng, and K. Müllen, “From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis,” Angewandte Chemie, vol. 51, no. 31, pp. 7640–7654, 2012.
[73]
A. Mattausch and O. Pankratov, “Density functional study of graphene overlayers on SiC,” Physica Status Solidi B, vol. 245, no. 7, pp. 1425–1435, 2008.
[74]
Y. Fogel, L. Zhi, A. Rouhanipour, D. Andrienko, H. J. R?der, and K. Müllen, “Graphitic nanoribbons with dibenzo[e,l]pyrene repeat units: synthesis and self-assembly,” Macromolecules, vol. 42, no. 18, pp. 6878–6884, 2009.
[75]
L. D?ssel, L. Gherghel, X. Feng, and K. Müllen, “Graphene nanoribbons by chemists: nanometer-sized, soluble, and defect-free,” Angewandte Chemie, vol. 123, no. 11, pp. 2588–2591, 2011.
[76]
C. Berger, Z. Song, T. Li et al., “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” Journal of Physical Chemistry B, vol. 108, no. 52, pp. 19912–19916, 2004.
[77]
K. Singh, O. Anil, and S. K. Dhawan, “Polymer-graphene nanocomposites: preparation, characterization, properties, and applications,” in Nanocomposites-New Trends and Developments, F. Ebrahimi, Ed., pp. 37–72, InTech, Hampshire, UK, 2012.
[78]
L. Zhi and K. Müllen, “A bottom-up approach from molecular nanographenes to unconventional carbon materials,” Journal of Materials Chemistry, vol. 18, no. 13, pp. 1472–1484, 2008.
[79]
C. Kim, B. Min, and W. Jung, “Preparation of graphene sheets by the reduction of carbon monoxide,” Carbon, vol. 47, no. 6, pp. 1610–1612, 2009.
[80]
A. Hirsch, “Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons,” Angewandte Chemie, vol. 48, no. 36, pp. 6594–6596, 2009.
[81]
I. Janowska, O. Ersen, T. Jacob et al., “Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation,” Applied Catalysis A, vol. 371, no. 1-2, pp. 22–30, 2009.
[82]
S. Mohammadi, Z. Kolahdouz, S. Darbari, S. Mohajerzadeh, and N. Masoumi, “Graphene formation by unzipping carbon nanotubes using a sequential plasma assisted processing,” Carbon, vol. 52, pp. 451–463, 2013.
[83]
W. Zhang, J. Cui, C. Tao et al., “A strategy for producing pure single-layer graphene sheets based on a confined self-assembly approach,” Angewandte Chemie, vol. 48, no. 32, pp. 5864–5868, 2009.
[84]
K. Sheng, Y. Xu, C. Li, and G. Shi, “High-performance self-assembled graphene hydrogels prepared by chemical reduction of graphene oxide,” New Carbon Materials, vol. 26, no. 1, pp. 9–15, 2011.
[85]
Q. Liu, A. Ishibashi, T. Fujigaya et al., “Formation of self-organized graphene honeycomb films on substrates,” Carbon, vol. 49, no. 11, pp. 3424–3429, 2011.
[86]
H. C. Schniepp, J. Li, M. J. McAllister et al., “Functionalized single graphene sheets derived from splitting graphite oxide,” Journal of Physical Chemistry B, vol. 110, no. 17, pp. 8535–8539, 2006.
[87]
G. Wang, X. Shen, B. Wang, J. Yao, and J. Park, “Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets,” Carbon, vol. 47, no. 5, pp. 1359–1364, 2009.
[88]
J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W. Hwang, and J. M. Tour, “Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets,” Journal of the American Chemical Society, vol. 130, no. 48, pp. 16201–16206, 2008.
[89]
M. J. McAllister, J. Li, D. H. Adamson et al., “Single sheet functionalized graphene by oxidation and thermal expansion of graphite,” Chemistry of Materials, vol. 19, no. 18, pp. 4396–4404, 2007.
[90]
M. M. Gudarzi, S. H. Aboutalebi, N. Yousefi et al., “Self-aligned graphene sheets-polyurethane nanocomposites,” in 2011 MRS Spring Meeting, pp. 17–22, usa, April 2011.
[91]
G. Zhao, T. Wen, C. Chen, and X. Wang, “Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas,” RSC Advances, vol. 2, no. 25, pp. 9286–9303, 2012.
[92]
B. Zhang, W. H. Lee, R. Piner et al., “Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils,” ACS Nano, vol. 6, no. 3, pp. 2471–2476, 2012.
[93]
X. Li, C. W. Magnuson, A. Venugopal et al., “Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper,” Journal of the American Chemical Society, vol. 133, no. 9, pp. 2816–2819, 2011.
[94]
X. Li, C. W. Magnuson, A. Venugopal et al., “Graphene films with large domain size by a two-step chemical vapor deposition process,” Nano Letters, vol. 10, no. 11, pp. 4328–4334, 2010.
[95]
K. V. Emtsev, A. Bostwick, K. Horn et al., “Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide,” Nature Materials, vol. 8, no. 3, pp. 203–207, 2009.
[96]
H. Huang, W. Chen, S. Chen, and A. T. S. Wee, “Bottom-up growth of epitaxial graphene on 6H-SiC(0001),” ACS Nano, vol. 2, no. 12, pp. 2513–2518, 2008.
[97]
Q. Zheng, W. H. Ip, X. Lin et al., “Transparent conductive films consisting of ultralarge graphene sheets produced by Langmuir-Blodgett assembly,” ACS Nano, vol. 5, no. 7, pp. 6039–6051, 2011.
[98]
Q. B. Zheng, M. M. Gudarzi, S. J. Wang, Y. Geng, Z. Li, and J. Kim, “Improved electrical and optical characteristics of transparent graphene thin films produced by acid and doping treatments,” Carbon, vol. 49, no. 9, pp. 2905–2916, 2011.
[99]
L. J. Cote, F. Kim, and J. Huang, “Langmuir-blodgett assembly of graphite oxide single layers,” Journal of the American Chemical Society, vol. 131, no. 3, pp. 1043–1049, 2009.
[100]
P. H. Lv, G. Wang, Y. Wan, J. Liu, Q. Liu, and F. Ma, “Bibliometric trend analysis on global graphene research,” Scientometrics, vol. 88, no. 2, pp. 399–419, 2011.
[101]
P. Shapira, J. Youtie, and S. Arora, “Early patterns of commercial activity in graphene,” Journal of Nanoparticle Research, vol. 14, no. 4, p. 811, 2012.
[102]
A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol. 6, no. 3, pp. 183–191, 2007.
[103]
O. C. Compton and S. T. Nguyen, “Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials,” Small, vol. 6, no. 6, pp. 711–723, 2010.
[104]
K. I. Winey and R. A. Vaia, “Polymer nanocomposites,” MRS Bulletin, vol. 32, no. 4, pp. 314–319, 2007.
[105]
T. Premkumar and K. E. Geckeler, “Graphene-DNA hybrid materials: assembly, applications, and prospects,” Progress in Polymer Science, vol. 37, no. 4, pp. 515–529, 2012.
[106]
T. Kuilla, S. Bhadra, D. Yao, N. H. Kim, S. Bose, and J. H. Lee, “Recent advances in graphene based polymer composites,” Progress in Polymer Science, vol. 35, no. 11, pp. 1350–1375, 2010.
[107]
T. Zhang, Q. Xue, S. Zhang, and M. Dong, “Theoretical approaches to graphene and graphene-based materials,” Nano Today, vol. 7, no. 3, pp. 180–200, 2012.
[108]
B. Z. Jang and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review,” Journal of Materials Science, vol. 43, no. 15, pp. 5092–5101, 2008.
[109]
J. J. Mack, L. M. Viculis, A. Ali et al., “Graphite nanoplatelet reinforcement of electrospun polyacrylonitrile nanofibers,” Advanced Materials, vol. 17, no. 1, pp. 77–80, 2005.
[110]
P. K. Hansma, P. J. Turner, and R. S. Ruoff, “Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials: new insights from natural materials,” Nanotechnology, vol. 18, no. 4, Article ID 044026, 2007.
[111]
T. Ramanathan, A. A. Abdala, S. Stankovich et al., “Functionalized graphene sheets for polymer nanocomposites,” Nature Nanotechnology, vol. 3, no. 6, pp. 327–331, 2008.
[112]
B. Das, K. Eswar Prasad, U. Ramamurty, and C. N. R. Rao, “Nano-indentation studies on polymer matrix composites reinforced by few-layer graphene,” Nanotechnology, vol. 20, no. 12, Article ID 125705, 2009.
[113]
A. Yu, P. Ramesh, M. E. Itkis, E. Bekyarova, and R. C. Haddon, “Graphite nanoplatelet-epoxy composite thermal interface materials,” Journal of Physical Chemistry C, vol. 111, no. 21, pp. 7565–7569, 2007.
[114]
X. Zhang, Y. Huang, Y. Wang, Y. Ma, Z. Liu, and Y. Chen, “Synthesis and characterization of a graphene-C60 hybrid material,” Carbon, vol. 47, no. 1, pp. 334–337, 2009.
[115]
Z. Liu, Y. Xu, X. Zhang, X. Zhang, Y. Chen, and J. Tian, “Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties,” Journal of Physical Chemistry B, vol. 113, no. 29, pp. 9681–9686, 2009.
[116]
T. J. Booth, P. Blake, R. R. Nair et al., “Macroscopic graphene membranes and their extraordinary stiffness,” Nano Letters, vol. 8, no. 8, pp. 2442–2446, 2008.
[117]
N. A. Luechinger, N. Booth, G. Heness, S. Bandyopadhyay, R. N. Grass, and W. J. Stark, “Surfactant-free, melt-processable metal-polymer hybrid materials: use of graphene as a dispersing agent,” Advanced Materials, vol. 20, no. 16, pp. 3044–3049, 2008.
[118]
S. Watcharotone, D. A. Diking Sasha Stankovich, R. Pinery et al., “Graphene-silica composite thin films as transparent conductors,” Nano Letters, vol. 7, no. 7, pp. 1888–1892, 2007.
[119]
H. Chen, M. B. Müller, K. J. Gilmore, G. G. Wallace, and D. Li, “Mechanically strong, electrically conductive, and biocompatible graphene paper,” Advanced Materials, vol. 20, no. 18, pp. 3557–3561, 2008.
[120]
J. Cheng, H. Xin, H. Zheng, and B. Wang, “One-pot synthesis of carbon coated-SnO2/graphene-sheet nanocomposite with highly reversible lithium storage capability,” Journal of Power Sources, vol. 232, pp. 52–158, 2013.
[121]
S. D. Perera, A. D. Liyanage, N. Nijem, J. P. Ferraris, Y. J. Chabal, and J. K. J. Balkus, “Vanadium oxide nanowire-Graphene binder free nanocomposite paper electrodes for supercapacitors: a facile green approach,” Journal of Power Sources, vol. 230, pp. 130–137, 2013.
[122]
J. H. Lee, J. Marroquin, K. Y. Rhee, S. J. Park, and D. Hui, “Cryomilling application of graphene to improve material properties of graphene/chitosan nanocomposites,” Composites B, vol. 45, no. 1, pp. 682–687, 2013.
[123]
J. Guo, L. Ren, R. Wang, C. Zhang, Y. Yang, and T. Liu, “Water dispersible graphene noncovalently functionalized with tryptophan and its poly(vinyl alcohol) nanocomposite,” Composites B, vol. 42, no. 8, pp. 2130–2135, 2011.
[124]
M. O. Ansari, S. K. Yadav, J. W. Cho, and F. Mohammad, “Thermal stability in terms of DC electrical conductivity retention and the efficacy of mixing technique in the preparation of nanocomposites of graphene/polyaniline over the carbon nanotubes/polyaniline,” Composites B, vol. 47, pp. 155–161, 2013.
[125]
G. W. Jeon, J. An, and Y. G. Jeong, “High performance cellulose acetate propionate composites reinforced with exfoliated graphene,” Composites B, vol. 43, no. 8, pp. 3412–3418, 2012.
[126]
P. Avouris and C. Dimitrakopoulos, “Graphene: synthesis and applications,” Materials Today, vol. 15, no. 3, pp. 86–97, 2012.
[127]
X. Huang, Z. Yin, S. Wu et al., “Graphene-based materials: synthesis, characterization, properties, and applications,” Small, vol. 7, no. 14, pp. 1876–1902, 2011.
[128]
H. Shen, L. Zhang, M. Liu, and Z. Zhang, “Biomedical applications of Graphene,” Theranostics, vol. 2, no. 3, pp. 283–294, 2012.
[129]
W. Choi, I. Lahiri, R. Seelaboyina, and Y. S. Kang, “Synthesis of graphene and its applications: a review,” Critical Reviews in Solid State and Materials Sciences, vol. 35, no. 1, pp. 52–71, 2010.
[130]
W. Hu, C. Peng, W. Luo et al., “Graphene-based antibacterial paper,” ACS Nano, vol. 4, no. 7, pp. 4317–4323, 2010.
[131]
K. Liao, Y. Lin, C. W. MacOsko, and C. L. Haynes, “Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts,” ACS Applied Materials and Interfaces, vol. 3, no. 7, pp. 2607–2615, 2011.
[132]
S. Liu, T. H. Zeng, M. Hofmann et al., “Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress,” ACS Nano, vol. 5, no. 9, pp. 6971–6980, 2011.
[133]
C. M. Santos, M. C. R. Tria, R. A. M. V. Vergara, F. Ahmed, R. C. Advincula, and D. F. Rodrigues, “Antimicrobial graphene polymer (PVK-GO) nanocomposite films,” Chemical Communications, vol. 47, no. 31, pp. 8892–8894, 2011.
[134]
C. M. Santos, J. Mangadlao, F. Ahmed, A. Leon, R. C. Advincula, and D. F. Rodrigues, “Graphene nanocomposite for biomedical applications: fabrication, antimicrobial and cytotoxic investigations,” Nanotechnology, vol. 23, no. 39, Article ID 395101, 2012.
[135]
M. I. E. Carpio, C. M. Santos, X. Wei, and D. F. Rodrigues, “Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells,” Nanoscale, vol. 4, no. 15, pp. 4746–4756, 2012.
[136]
E. Peng, E. S. G. Choo, P. Chandrasekharan et al., “Synthesis of manganese ferrite/Graphene oxide nanocomposites for biomedical applications,” Small, vol. 8, no. 23, pp. 3620–3630, 2012.
[137]
Z. Wu, X. D. Chen, S. Zhu et al., “Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite,” Sensors and Actuators B, vol. 178, pp. 485–493, 2013.
[138]
F. L. Meng, H. H. Li, L. T. Kong et al., “Parts per billion-level detection of benzene using SnO2/graphene nanocomposite composed of sub-6 nm SnO2 nanoparticles,” Analytica Chimica Acta, vol. 736, pp. 100–107, 2012.
[139]
P. K. Sahoo, B. Panigrahy, S. Sahoo, A. K. Satpati, D. Li, and D. Bahadur, “In situ synthesis and properties of reduced graphene oxide/Bi nanocomposites: as an electroactive material for analysis of heavy metals,” Biosensors and Bioelectronics, vol. 43, pp. 293–296, 2013.
[140]
D. Zhang, Y. Zhang, L. Zheng, Y. Z. Zhan, and L. C. He, “Graphene oxide/poly-L-lysine assembled layer for adhesion and electrochemical impedance detection of leukemia K562 cancer cells,” Biosensors and Bioelectronics, vol. 42, pp. 112–118, 2013.
[141]
J. Li, D. Kuang, Y. Feng et al., “Green synthesis of silver nanoparticles-graphene oxide nanocomposite and its application in electrochemical sensing of tryptophan,” Biosensors and Bioelectronics, vol. 42, pp. 198–206, 2013.
[142]
H. Xia, D. D. Zhu, Y. Fu, and X. Wang, “CoFe2O4-graphene nanocomposite as a high-capacity anode material for lithium-ion batteries,” Electrochimica Acta, vol. 83, pp. 166–174, 2012.
[143]
Y. Zhao, Y. Huang, Q. Wang, X. Wang, and M. Zong, “Carbon-doped Li2SnO3/graphene as an anode material for lithium-ion batteries,” Ceramics International, vol. 39, no. 2, pp. 1741–1747, 2013.
[144]
H. Xia, Y. Qian, Y. Fu, and X. Wang, “Graphene anchored with ZnFe2O4 nanoparticles as a high-capacity anode material for lithium-ion batteries,” Solid State Sciences, vol. 17, pp. 67–71, 2013.
[145]
L. Zhang, S. Wang, D. Cai et al., “Li3V2(PO4)3@C/graphene composite with improved cycling performance as cathode material for lithium-ion batteries,” Electrochimica Acta, vol. 91, pp. 108–113, 2013.
[146]
H. Yang, T. Song, S. Lee et al., “Tin indium oxide/graphene nanosheet nanocomposite as an anode material for lithium ion batteries with enhanced lithium storage capacity and rate capability,” Electrochimica Acta, vol. 91, pp. 275–281, 2013.
[147]
J. Zhu, D. Wang, L. Wang, X. Lang, and W. You, “Facile synthesis of sulfur coated SnO2-graphene nanocomposites for enhanced lithium ion storage,” Electrochimica Acta, vol. 91, pp. 323–329, 2013.
[148]
S. Liu, J. Wang, J. Zeng et al., ““Green” electrochemical synthesis of Pt/graphene sheet nanocomposite film and its electrocatalytic property,” Journal of Power Sources, vol. 195, no. 15, pp. 4628–4633, 2010.
[149]
X. Fu, J. Jin, Y. Liu et al., “Graphene- xerogel- based non-precious metal catalyst for oxygen reduction reaction,” Electrochemistry Communications, vol. 28, pp. 5–8, 2013.
[150]
L. Wang, Y. Zhang, and Z. Li, “Chemical reduced graphene oxide/AuPtPd nanocomposite for enhanced electrocatalytic ability,” Materials Letters, vol. 94, pp. 179–182, 2013.
[151]
S. Yu, Q. Liu, W. Yang, K. Han, Z. Wang, and H. Zhu, “Graphene-CeO2 hybrid support for Pt nanoparticles as potential electrocatalyst for direct methanol fuel cells,” Electrochimica Acta, vol. 94, pp. 245–251, 2013.
[152]
Y. Cao, C. Xu, X. Wu, X. Wang, L. Xing, and K. Scott, “A poly (ethylene oxide)/graphene oxide electrolyte membrane for low temperature polymer fuel cells,” Journal of Power Sources, vol. 196, no. 20, pp. 8377–8382, 2011.
[153]
G. Wang, S. Zhuo, and W. Xing, “Graphene/polyaniline nanocomposite as counter electrode of dye-sensitized solar cells,” Materials Letters, vol. 69, pp. 27–29, 2012.
[154]
C. Y. Liu, K. C. Huang, P. H. Chung et al., “Graphene-modified polyaniline as the catalyst material for the counter electrode of a dye-sensitized solar cell,” Journal of Power Sources, vol. 217, pp. 152–157, 2012.
[155]
J. J. Zeng, C. L. Tsai, and Y. J. Lin, “Hybrid photovoltaic devices based on the reduced graphene oxide-based polymer composite and n-type GaAs,” Synthetic Metals, vol. 162, no. 15-16, pp. 1411–1415, 2012.
[156]
C. Y. Neo and J. Ouyang, “The production of organogels using graphene oxide as the gelator for use in high-performance quasi-solid state dye-sensitized solar cells,” Carbon, vol. 54, pp. 48–57, 2013.
[157]
R. Bajpai, S. Roy, N. Koratkar, and D. S. Misra, “NiO nanoparticles deposited on graphene platelets as a cost-effective counter electrode in a dye sensitized solar cell,” Carbon, vol. 56, pp. 56–63, 2013.
[158]
W. Y. Cheng, C. C. Wang, and S. Y. Lu, “Graphene aerogels as a highly efficient counter electrode material for dye-sensitized solar cells,” Carbon, vol. 54, pp. 291–299, 2013.
[159]
S. Goswami, U. N. Maiti, S. Maiti, S. Nandy, M. K. Mitra, and K. K. Chattopadhyay, “Preparation of graphene-polyaniline composites by simple chemical procedure and its improved field emission properties,” Carbon, vol. 49, no. 7, pp. 2245–2252, 2011.
[160]
Z. J. Li, B. C. Yang, G. Q. Yun, S. R. Zhang, M. Zhang, and M. X. Zhao, “Synthesis of Sn nanoparticle decorated graphene sheets for enhanced field emission properties,” Journal of Alloys and Compounds, vol. 550, pp. 353–357, 2013.
[161]
F. Alvi, M. K. Ram, P. A. Basnayaka, E. Stefanakos, Y. Goswami, and A. Kumar, “Graphene-polyethylenedioxythiophene conducting polymer nanocomposite based supercapacitor,” Electrochimica Acta, vol. 56, no. 25, pp. 9406–9412, 2011.
[162]
H. Gómez, M. K. Ram, F. Alvi, P. Villalba, E. Stefanakos, and A. Kumar, “Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors,” Journal of Power Sources, vol. 196, no. 8, pp. 4102–4108, 2011.
[163]
Y. Zhan, X. Yang, H. Guo, J. Yang, F. Meng, and X. Liu, “Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability,” Journal of Materials Chemistry, vol. 22, no. 12, pp. 5602–5608, 2012.
[164]
S. Sahoo, S. Dhibar, G. Hatui, P. Bhattacharya, and C. K. Das, “Graphene/polypyrrole nanofiber nanocomposite as electrode material for electrochemical supercapacitor,” Polymer, vol. 54, no. 3, pp. 1033–1042, 2013.
[165]
Q. Liu, O. Nayfeh, M. H. Nayfeh, and T. Yau S, “Flexible supercapacitor sheets based on hybrid nanocomposite materials,” Nano Energy, vol. 2, no. 1, pp. 133–137, 2013.
[166]
A. Pendashteh, M. F. Mousavi, and M. S. Rahmanifar, “Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor,” Electrochimica Acta, vol. 88, pp. 347–357, 2013.
[167]
H. Heli, H. Yadegari, and A. Jabbari, “Graphene nanosheets-poly(o-aminophenol) nanocomposite for supercapacitor applications,” Materials Chemistry and Physics, vol. 134, no. 1, pp. 21–25, 2012.
[168]
P. A. Basnayaka, M. K. Ram, E. Stefanakos, and A. Kumar, “Supercapacitors based on graphene-polyaniline derivative nanocomposite electrode materials,” Electrochimica Acta, vol. 92, pp. 376–382, 2013.
[169]
B. Yuan, C. Xu, D. Deng et al., “Graphene oxide/nickel oxide modified glassy carbon electrode for supercapacitor and nonenzymatic glucose sensor,” Electrochimica Acta, vol. 88, pp. 708–712, 2013.
[170]
Y. Li, H. Peng, G. Li, and K. Chen, “Synthesis and electrochemical performance of sandwich-like polyaniline/graphene composite nanosheets,” European Polymer Journal, vol. 48, no. 8, pp. 1406–1412, 2012.
[171]
R. B. Rakhi and H. N. Alshareef, “Enhancement of the energy storage properties of supercapacitors using graphene nanosheets dispersed with metal oxide-loaded carbon nanotubes,” Journal of Power Sources, vol. 196, no. 20, pp. 8858–8865, 2011.
[172]
G. Ma, H. Peng, J. Mu, H. Huang, X. Zhou, and Z. Lei, “In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor,” Journal of Power Sources, vol. 229, no. 1, pp. 72–78, 2013.
[173]
W. L. Song, L. M. Veca, C. Y. Kong et al., “Polymeric nanocomposites with graphene sheets-Materials and device for superior thermal transport properties,” Polymer, vol. 53, no. 18, pp. 3910–3916, 2012.
[174]
G. Gedler, M. Antunes, V. Realinho, and J. I. Velasco, “Thermal stability of polycarbonate-graphene nanocomposite foams,” Polymer Degradation and Stability, vol. 97, no. 8, pp. 1297–1304, 2012.
[175]
S. K. Yadav and J. W. Cho, “Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites,” Applied Surface Science, vol. 266, no. 1, pp. 360–367, 2013.
[176]
H. Huang, P. Ren, J. Chen, W. Zhang, X. Ji, and Z. Li, “High barrier graphene oxide nanosheet/poly(vinyl alcohol) nanocomposite films,” Journal of Membrane Science, vol. 409-410, pp. 156–163, 2012.
[177]
H. Wu and L. T. Drzal, “Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties,” Carbon, vol. 50, no. 3, pp. 1135–1145, 2012.
[178]
S. K. Kumar, M. Castro, A. Saiter et al., “Development of poly (isobutylene-co-isoprene) / reduced graphene oxide nanocomposites for barrier, dielectric and sensing applications,” Materials Letters, vol. 96, no. 1, pp. 109–112, 2013.
[179]
C. H. Chang, T. C. Huang, C. W. Peng et al., “Novel anticorrosion coatings prepared from polyaniline/graphene composites,” Carbon, vol. 50, no. 14, pp. 5044–5051, 2012.
[180]
G. Y. Kim, M. Choi, D. Lee, and C. Ha, “2D-Aligned graphene sheets in transparent polyimide/graphene nanocomposite films based on noncovalent interactions between poly(amic acid) and graphene carboxylic acid,” Macromolecular Materials and Engineering, vol. 297, no. 4, pp. 303–311, 2012.
[181]
A. F. ávila, M. I. Yoshida, M. G. R. Carvalho, E. C. Dias, and J. á. Junior, “An investigation on post-fire behavior of hybrid nanocomposites under bending loads,” Composites B, vol. 41, no. 5, pp. 380–387, 2010.
[182]
Y. Fan, M. Estili, G. Igarashi, W. Jiang, and A. Kawasaki, “The effect of homogeneously dispersed few-layer graphene on microstructure and mechanical properties of Al2O3 nanocomposites,” Journal of the European Ceramic Society, vol. 34, no. 2, pp. 443–451, 2013.
[183]
P. Miranzo, C. Ramírez, B. R. Manso et al., “In situ processing of electrically conducting graphene/SiC nanocomposites,” Journal of the European Ceramic Society, vol. 33, no. 10, pp. 1665–1674, 2013.
[184]
P. Hvizdo?, J. Dusza, and C. Balázsi, “Tribological properties of Si3N4-graphene nanocomposites,” Journal of the European Ceramic Society, vol. 33, no. 12, pp. 2359–2364, 2013.
[185]
P. Kun, O. Tapasztó, F. Wéber, and C. Balázsi, “Determination of structural and mechanical properties of multilayer graphene added silicon nitride-based composites,” Ceramics International, vol. 38, no. 1, pp. 211–216, 2012.
[186]
F. Inam, B. R. Bhat, T. Vo, and W. M. Daoush, “Structural health monitoring capabilities in ceramic-carbon nanocomposites,” Ceramics International, 2013.
[187]
G. B. Yadhukulakrishnan, S. Karumuri, A. Rahman, R. P. Singh, A. K. Kalkan, and S. P. Harimkar, “Spark plasma sintering of graphene reinforced zirconium diboride ultra-high temperature ceramic composites,” Ceramics International, vol. 39, no. 6, pp. 6637–6646, 2013.
[188]
J. Liu, H. Yan, M. J. Reece, and K. Jiang, “Toughening of zirconia/alumina composites by the addition of graphene platelets,” Journal of the European Ceramic Society, vol. 32, no. 16, pp. 4185–4193, 2012.
[189]
H. Liem and H. S. Choy, “Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers,” Solid State Communications, vol. 163, pp. 41–45, 2013.
[190]
D. Lahiri, E. Khaleghi, S. R. Bakshi, W. Li, E. A. Olevsky, and A. Agarwal, “Graphene-induced strengthening in spark plasma sintered tantalum carbide-nanotube composite,” Scripta Materialia, vol. 68, no. 5, pp. 285–288, 2013.
[191]
D. A. Pejakovi?, J. Marschall, M. R. George, B. R. Rogers, W. R. Nieveen, and V. Pajcini, “Synthesis of carbon-rich hafnia thin films by pulsed laser deposition,” Journal of the European Ceramic Society, vol. 30, no. 11, pp. 2289–2300, 2010.
[192]
K. I. Kim and T. W. Hong, “Hydrogen permeation of TiN-graphene membrane by hot press sintering (HPS) process,” Solid State Ionics, vol. 225, pp. 699–702, 2012.
[193]
N. R. Lee, S. S. Lee, K. I. Kim et al., “Fabrications and evaluations of hydrogen permeation on Al2O3/CeO2/graphene (ACG) composites membrane by Hot Press Sintering (HPS),” International Journal of Hydrogen Energy, vol. 38, no. 18, pp. 7654–7658, 2013.
[194]
D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chemical Society Reviews, vol. 39, no. 1, pp. 228–240, 2010.
[195]
F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, “Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview,” Journal of Composite Materials, vol. 40, no. 17, pp. 1511–1575, 2006.
[196]
D. C. Marcano, D. V. Kosynkin, J. M. Berlin et al., “Improved synthesis of graphene oxide,” ACS Nano, vol. 4, no. 8, pp. 4806–4814, 2010.
[197]
M. Yadav, K. Y. Rhee, I. H. Jung, and S. J. Park, “Eco-friendly synthesis, characterization and properties of a sodium carboxymethyl cellulose/graphene oxide nanocomposite film,” Cellulose, vol. 20, no. 2, pp. 687–698, 2013.
[198]
M. Segal, “Selling graphene by the ton,” Nature Nanotechnology, vol. 4, no. 10, pp. 612–614, 2009.