全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A New Method for Fabrication of Nanohydroxyapatite and TCP from the Sea Snail Cerithium vulgatum

DOI: 10.1155/2014/382861

Full-Text   Cite this paper   Add to My Lib

Abstract:

Biphasic bioceramic nanopowders of hydroxyapatite (HA) and β-tricalcium phosphate (TCP) were prepared from shells of the sea snail Cerithium vulgatum (Bruguière, 1792) using a novel chemical method. Calcination of the powders produced was carried out at varying temperatures, specifically at 400°C and 800°C, in air for 4 hours. When compared to the conventional hydrothermal transformation method, this chemical method is very simple, economic, due to the fact that it needs inexpensive and safe equipment, because the transformation of the aragonite and calcite of the shells into the calcium phosphate phases takes place at 80°C under the atmospheric pressure. The powders produced were determined using infrared spectroscopy (FT-IR), X-ray diffraction, and scanning electron microscopy (SEM). The features of the powders produced along with the fact of their biological origin qualify these powders for further consideration and experimentation to fabricate nanoceramic biomaterials. 1. Introduction To date, biomaterials is a rapidly developing interdisciplinary field at the interface of engineering, science, and healthcare industry; its effect on human health related issues is also obvious and recognized all over the world. The global biomaterials device market was estimated as $115.4 billion in 2008 and is expected to increase to $252.7 billion in 2014. The largest market share among all biomaterial products belongs to orthopedic biomaterials [1], like hydroxyapatite (HA) materials. With a chemical formula of Ca10(PO4)6(OH)2, HA is the main inorganic component of bone [2] and tooth [3]. Thus, HA is very popular for implant materials especially in orthopedic bone surgery [2] and other hard tissue implantations [3], such as in dental and aesthetic surgery. Powders of HA can be produced with very various chemical techniques, such as precipitation, hydrothermal techniques, hydrolysis of other calcium phosphates, and sol-gel [4] from very pure chemicals or from natural materials. Calcination is another method to fabricate HA from different natural sources, like bone (i.e., human [5], bovine [6], sheep [7], turkey, and chicken) or tooth dentine [8] and enamel [9–11]. In previous work, there are also papers reporting some very interesting sources for HA production, such as crocodile bone [12], dear antler [13], and fish wastes. Hydrothermal methods are very popular to transform various sources with a sea origin, such as cuttlefish bone [14], some oysters [15], and corals [16]. In our more recent studies, we have presented some very simple mechano-chemical methods,

References

[1]  D. Lahiri, S. Ghosh, and A. Agarwal, “Carbon nanotube reinforced hydroxyapatite composite for orthopedic application: a review,” Materials Science and Engineering C, vol. 32, no. 7, pp. 1727–1758, 2012.
[2]  M. R. Foroughi, S. Karbasi, and R. Ebrahimi-Kahrizsangi, “Physical and mechanical properties of a poly-3-hydroxybutyrate-coated nanocrystalline hydroxyapatite scaffold for bone tissue engineering,” Journal of Porous Materials, vol. 19, no. 5, pp. 667–675, 2012.
[3]  F. N. Oktar, M. R. Demirer, O. Gunduz et al., “Sintering effect on mechanical properties of composites of bovine hydroxyapatite (BHA) and Li2O,” Key Engineering Materials, vol. 309–311, pp. 49–52, 2006.
[4]  S. J. Roll, Processing of hydroxyapatite by biomimetic process, a thesis submitted in partial fulfillment of the requirement for the degree of bachelor of technology [M.S. thesis], Department of Ceramic Engineering, National Institute of Technology Rourkela, Odisha, India, 2006–2010.
[5]  G. Goller, F. N. Oktar, L. S. Ozyegin, E. S. Kayali, and E. Demirkesen, “Plasma-sprayed human bone-derived hydroxyapatite coatings: effective and reliable,” Materials Letters, vol. 58, no. 21, pp. 2599–2604, 2004.
[6]  L. S. Ozyegin, F. N. Oktar, G. Goller, E. S. Kayali, and T. Yazici, “Plasma-sprayed bovine hydroxyapatite coatings,” Materials Letters, vol. 58, no. 21, pp. 2605–2609, 2004.
[7]  N. Demirkol, F. N. Oktar, and E. S. Kayali, “Mechanical and microstructural properties of sheep hydroxyapatite (SHA)-niobium oxide composites,” Acta Physica Polonica A, vol. 121, no. 1, pp. 274–276, 2012.
[8]  G. Goller and F. N. Oktar, “Sintering effects on mechanical properties of biologically derived dentine hydroxyapatite,” Materials Letters, vol. 56, no. 3, pp. 142–147, 2002.
[9]  F. N. Oktar, “Microstructure and mechanical properties of sintered enamel hydroxyapatite,” Ceramics International, vol. 33, no. 7, pp. 1309–1314, 2007.
[10]  N. Akyurt, U. Karacayli, M. Yetmez, S. S. Pazarlioglu, and F. N. Oktar, “Microstructure and mechanical properties of sintered sheep enamel-derived hydroxyapatite,” International Journal of Artificial Organs, vol. 34, no. 8, p. 700, 2011.
[11]  N. Demirkol, M. Yetmez, U. Karacayli et al., “Mechanical properties of hydroxyapatite-tantalum composites,” International Journal of Artificial Organs, vol. 33, p. 468, 2010, (XXXVII Annual ESAO Congress) Skopje, R. Macedonia from 8th to 11th September 2010.
[12]  K. Lewis, U. Boonyang, L. Evans, S. Siripaisarnpipat, and B. Ben-Nissan, “A comparative study of Thai and Australian crocodile bone for use as a potential biomaterial,” Key Engineering Materials, vol. 309–311, pp. 15–18, 2006.
[13]  M. Bǎciu?, G. Bǎciu?, V. Simon et al., “Investigation of deer antler as a potential bone regenerating biomaterial,” Journal of Optoelectronics and Advanced Materials, vol. 9, no. 8, pp. 2547–2550, 2007.
[14]  J. H. G. Rocha, A. F. Lemos, S. Agathopoulos et al., “Scaffolds for bone restoration from cuttlefish,” Bone, vol. 37, no. 6, pp. 850–857, 2005.
[15]  A. F. Lemos, J. H. G. Rocha, S. S. F. Quaresma et al., “Hydroxyapatite nano-powders produced hydrothermally from nacreous material,” Journal of the European Ceramic Society, vol. 26, no. 16, pp. 3639–3646, 2006.
[16]  B. B. Nissan, A. S. Milev, D. D. Green et al., “Processes for treating coral and coating an object,” US patent no. 2004/0091547 A1, 2004.
[17]  D. Agaogullar?, D. Kel, H. Gokce et al., “Bioceramic production from sea urchins,” Acta Physica Polonica A, vol. 121, no. 1, pp. 23–26, 2012.
[18]  R. Samur, L. S. Ozyegin, and D. Agaogullari, “Calcium phosphate formation from dea urchin-(brissus Latecarinatus) via modified mechano-chemical (ultrasonic) conversion method,” Metalurgija, vol. 52, pp. 375–378, 2013.
[19]  A. U. Tuyel, E. T. Oner, S. Ozyegin, and F. N. Oktar, “Production and characterization of bioceramic nanopowders of natural-biological origin,” Journal of Biotechnology, vol. 131S, p. S-65, 2007.
[20]  M. L. Tamasan, L. S. Ozyegin, F. N. Oktar, and V. Simon, “Characterization of calcium phosphate powders originating from Phyllacanthus imperialis and Trochidae Infundibulum concavus marine shells,” Materials Science and Engineering C, vol. 33, no. 5, pp. 2569–2577, 2013.
[21]  D. Kel, H. G?k?e, D. Bilgi? et al., “Production of natural bioceramic from land snails,” Key Engineering Materials, vol. 493-494, pp. 287–292, 2012.
[22]  I. J. Macha, L. S. Ozyegin, J. Chou, R. Samur, F. N. Oktar, and B. Ben-Nissan, “An alternative synthesis method for di calcium phosphate (Monetite) powders from mediterranean mussel (Mytilus galloprovincialis) shells,” Journal of the Australian Ceramic Society, vol. 49, pp. 122–128, 2013.
[23]  S. Agathopoulos, L. S. Ozyegin, Z. Ahmad et al., “Nano-bioceramics production from razor shell,” Key Engineering Materials, vol. 493-494, pp. 775–780, 2012.
[24]  F. N. Oktar, U. Tuyel, N. Demirkol et al., “A new safe method to produce bioceramic nano-powders from nacre venus verrucosa,” International Journal of Artificial Organs, vol. 33, pp. 467–468, 2010, (XXXVII Annual ESAO Congress) Skopje, R. Macedonia from 8th to 11th September 2010.
[25]  A. U. Tuyel, Production and characterization of bioceramic nanopowders of natural-biological origin [M.S. thesis], Institute for Graduate Studies in Pure and Applied Sciences, T.C. Marmara University, 2008.
[26]  D. Kel, U. Karacayli, M. Yetmez, L. S. Ozyegin, E. S. Kayal?, and F. N. Oktar, “Hydroxyapatite production with various techniques from sea urchin,” International Journal of Artificial Organs, vol. 34, p. 700, 2011.
[27]  April 2013, http://www.marinespecies.org/aphia.php?p=taxdetails&id=139066.
[28]  April 2012, http://en.wikipedia.org/wiki/Cerithium_vulgatum.
[29]  A. S. Ates, T. Katagan, and A. Kocata?, “Gastropod shell species occupied by hermit crabs (Anomura: Decapoda) along the Turkish coast of the Aegean Sea,” Journal of Zoology, vol. 31, pp. 13–18, 2007.
[30]  April 2013, http://www.idscaro.net/sci/01_coll/plates/gastro/pl_cerithiidae_1.htm.
[31]  April 2012, http://www.eu-nomen.eu/portal/taxon.php?GUID=urn:lsid:marinespecies.org:taxname:139066.
[32]  V. I. Zdun and S. M. Ignat'ev, “Black Sea mollusc, Cerithium vulgatum (Gastropoda, Cerithiidae), a new intermediate trematode host,” Parazitologiia, vol. 14, no. 4, pp. 345–348, 1980.
[33]  L. S. Ozyegin, F. Sima, C. Ristoscu et al., “Sea snail: an alternative source for nano-bioceramic production,” Key Engineering Materials, vol. 493-494, pp. 781–786, 2012.
[34]  U. Balthasar and M. Cusack, “Aragonite-Calcite seas and evolution of biocalcification,” in Proceedings of the 22nd V.M. Goldschmidt Conference, Earth in Evaluation, Montreal, Canada, 2012.
[35]  J. J. Song, An in vitro investigation of the spatial control involved in collagen mineralization [M.S. thesis], University of Toronto, 2010.
[36]  S. Sai and K. Fujii, “?-tricalcium phosphate as a bone graft substitut,” Jikeikai Medical Journal, vol. 52, pp. 47–54, 2005.
[37]  P. Hernigou, X. Roussignol, C. H. Flouzat-Lachaniette, P. Filippini, I. Guissou, and A. Poignard, “Opening wedge tibial osteotomy for large varus deformity with Ceraver TM resorbable beta tricalcium phosphate wedges,” International Orthopaedics, vol. 34, no. 2, pp. 191–199, 2010.
[38]  A. R. Boyd, B. J. Meenan, and N. S. Leyland, “Surface characterisation of the evolving nature of radio frequency (RF) magnetron sputter deposited calcium phosphate thin films after exposure to physiological solution,” Surface and Coatings Technology, vol. 200, no. 20-21, pp. 6002–6013, 2006.
[39]  L. Duta, F. N. Oktar, G. E. Stan et al., “Novel doped hydroxyapatite thin films obtained by pulsed laser deposition,” Applied Surface Science, vol. 265, pp. 41–49, 2013.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133